首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4 glucose transporters from the low-density membrane fraction to the plasma membrane. Arsenite did not activate early steps of the insulin receptor (IR)-signalling pathway and the response was insensitive to inhibition of phosphatidylinositol-3'-kinase (PI-3') kinase by wortmannin. These findings indicate that the 'classical' IR-IR substrate-PI-3' kinase pathway, that is essential for insulin-induced GLUT4 translocation, is not activated by arsenite. However, arsenite-treatment did induce tyrosine-phosphorylation of c-Cbl. Furthermore, treatment of the cells with the tyrosine kinase inhibitor, tyrphostin A25, abolished arsenite-induced glucose uptake, suggesting that the induction of a tyrosine kinase by arsenite is essential for glucose uptake. Both arsenite and insulin-induced glucose uptake were inhibited partially by the p38 MAP kinase inhibitor, SB203580. This compound had no effect on the magnitude of translocation of glucose transporters indicating that the level of glucose transport is determined by additional factors. Arsenite- and insulin-induced glucose uptake responded in a remarkably similar dose-dependent fashion to a range of pharmacological- and peptide-inhibitors for atypical PKC-lambda, a downstream target of PI-3' kinase signalling in insulin-induced glucose uptake. These data show that in 3T3-L1 adipocytes both arsenite- and insulin-induced signalling pathways project towards a similar cellular response, namely GLUT1 and GLUT4 translocation and glucose uptake. This response to arsenite is not functionally linked to early steps of the IR-IRS-PI-3' kinase pathway, but does coincide with c-Cbl phosphorylation, basal levels of PKC-lambda activity and p38 MAPK activation.  相似文献   

2.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

3.
Prolonged use of glucocorticoids induces pronounced insulin resistance in vivo. In vitro, treatment of 3T3-L1 adipocytes with dexamethasone for 48 h reduces the maximal level of insulin- and stress (arsenite)-induced glucose uptake by approximately 50%. Although phosphatidylinositol 3-kinase signaling was slightly attenuated, phosphorylation of its downstream effectors such as protein kinase B and protein kinase C-lambda remained intact. Nor was any effect of dexamethasone treatment observed on insulin- or arsenite-induced translocation of glucose transporter 4 (GLUT4) toward the plasma membrane. However, for a maximal response to either arsenite- or insulin-induced glucose uptake in these cells, functional p38 MAPK signaling is required. Dexamethasone treatment markedly attenuated p38 MAPK phosphorylation coincident with an up-regulation of the MAPK phosphatases MKP-1 and MKP-4. Employing lentivirus-mediated ectopic expression in fully differentiated 3T3-L1 adipocytes demonstrated a differential effect of these phosphatases: whereas MKP-1 was a more potent inhibitor of insulin-induced glucose uptake, MKP-4 more efficiently inhibited arsenite-induced glucose uptake. This coincided with the effects of these phosphatases on p38 MAPK phosphorylation, i.e. MKP-1 and MKP-4 attenuated p38 MAPK phosphorylation by insulin and arsenite, respectively. Taken together, these data provide evidence that in 3T3-L1 adipocytes dexamethasone inhibits the activation of the GLUT4 in the plasma membrane by a p38 MAPK-dependent process, rather than in a defect in GLUT4 translocation per se.  相似文献   

4.
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest.  相似文献   

5.
Chromium picolinate (CrPic) has been discovered as a supplemental or alternative medication for type 2 diabetes, but its mechanism of action is not well understood. The purpose of this study was to explore the possible anti-diabetic mechanisms of CrPic in insulin-resistant 3T3-L1 adipocytes; the insulin resistance was induced by treatment with high glucose and insulin for 24 h. The effects of CrPic on glucose metabolism and the glucose uptake-inducing activity of CrPic were investigated. Meanwhile, the effects of CrPic on glucose transporter 4 (GLUT4) translocation were visualized by immonofluorescence microscopy. In addition, its effects on insulin signaling pathways and mitogen-activated protein kinase (MAPK) signaling cascades were assessed by immunoblotting analysis and real-time PCR. The results showed that CrPic induced glucose metabolism and uptake, as well as GLUT4 translocation to plasma membrane (PM) in both control and insulin-resistant 3T3-L1 adipocytes without any changes in insulin receptor β (IR-β), protein kinase B (AKt), c-Cbl, extracellular signal-regulated kinase (ERK), c-Jun phosphorylation and c-Cbl-associated protein (CAP) mRNA levels. Interestingly, CrPic was able to increase the basal and insulin-stimulated levels of p38 MAPK activation in the control and insulin-resistant cells. Pretreatment with the specific p38 MAPK inhibitor SB203580 partially inhibited the CrPic-induced glucose transport, but CrPic-activated translocation of GLUT4 was not inhibited by SB203580. This study provides an experimental evidence of the effects of CrPic on glucose uptake through the activation of p38 MAPK and it is independent of the effect on GLUT4 translocation. The findings also suggest exciting new insights into the role of p38 MAPK in glucose uptake and GLUT4 translocation.  相似文献   

6.
The isoflavone-derivative genistein is commonly applied as an inhibitor of tyrosine kinases. In this report we analyze the effect of genistein on insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In these cells insulin-induced glucose uptake is primarily mediated by the GLUT4 glucose transporter. We observed that pre-treatment with genistein did not affect insulin-induced tyrosine kinase activity of the insulin receptor or activation of protein kinase B. On the other hand, genistein acted as a direct inhibitor of insulin-induced glucose uptake in 3T3-L1 adipocytes with an IC(50) of 20 microM. We conclude that apart from acting as a general tyrosine kinase inhibitor, genistein also affects the function of other proteins such as the GLUT4 transporter. These data suggest that caution must be applied when interpreting data on the involvement of tyrosine kinase activity in glucose uptake in 3T3-L1 adipocytes.  相似文献   

7.
To determine whether the increase in glucose uptake following AMP-activated protein kinase (AMPK) activation in adipocytes is mediated by accelerated GLUT4 translocation into plasma membrane, we constructed a chimera between GLUT4 and enhanced green fluorescent protein (GLUT4-eGFP) and transferred its cDNA into the nucleus of 3T3-L1 adipocytes. Then, the dynamics of GLUT4-eGFP translocation were visualized in living cells by means of laser scanning confocal microscopy. It was revealed that the stimulation with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and 2,4-dinitrophenol (DNP), known activators of AMPK, promptly accelerates its translocation within 4 min, as was found in the case of insulin stimulation. The insulin-induced GLUT4 translocation was markedly inhibited after addition of wortmannin (P < 0.01). However, the GLUT4 translocation through AMPK activators AICAR and DNP was not affected by wortmannin. Insulin- and AMPK-activated translocation of GLUT4 was not inhibited by SB-203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). Glucose uptake was significantly increased after addition of AMPK activators AICAR and DNP (P < 0.05). AMPK- and insulin-stimulated glucose uptake were similarly suppressed by wortmannin (P < 0.05-0.01). In addition, SB-203580 also significantly prevented the enhancement of glucose uptake induced by AMPK and insulin (P < 0.05). These results suggest that AMPK-activated GLUT4 translocation in 3T3-L1 adipocytes is mediated through the insulin-signaling pathway distal to the site of activated phosphatidylinositol 3-kinase or through a signaling system distinct from that activated by insulin. On the other hand, the increase of glucose uptake dependent on AMPK activators AICAR and DNP would be additionally due to enhancement of the intrinsic activity in translocated GLUT4 protein, possibly through a p38 MAPK-dependent mechanism.  相似文献   

8.
Activation of AMP-activated protein kinase (AMPK) has been recently demonstrated to be associated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-stimulated glucose transport mediated by both GLUT1 and GLUT4 transporters. However, signaling events upstream and downstream of AMPK are unknown. Here we report that 1) p38 mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase 3 (MKK3) were activated by AICAR in Clone 9 cells, which express only the GLUT1 transporters, and 2) activation of p38 was required for AICAR-stimulated glucose transport since treatment of the cells with p38 inhibitor SB203580 or overexpression of dominant negative p38 mutant inhibited glucose transport. Moreover, we found that overexpression of the constitutively active form of AMPK mutant also resulted in a significant activation of p38, and inhibition of p38 activity by SB203580 did not affect AICAR-stimulated activation of AMPK. These findings demonstrate that AICAR-stimulated activation of p38 is indeed mediated by AMPK, and the p38 MAPK cascade is downstream of AMPK in the signaling pathway of AICAR-stimulated glucose transport in Clone 9 cells.  相似文献   

9.
Participation of p38 mitogen-activated protein kinase (p38) in insulin-induced glucose uptake was suggested using pyridinylimidazole p38 inhibitors (e.g. SB203580). However, the role of p38 in insulin action remains controversial. We further test p38 participation in glucose uptake using a dominant-negative p38 mutant and two novel pharmacological p38 inhibitors related to but different from SB203580. We present the structures and activities of the azaazulene pharmacophores A291077 and A304000. p38 kinase activity was inhibited in vitro by A291077 and A304000 (IC(50) = 0.6 and 4.7 microm). At higher concentrations A291077 but not A304000 inhibited JNK2alpha (IC(50) = 3.5 microm). Pretreatment of 3T3-L1 adipocytes and L6 myotubes expressing GLUT4myc (L6-GLUT4myc myotubes) with A291077, A304000, SB202190, or SB203580 reduced insulin-stimulated glucose uptake by 50-60%, whereas chemical analogues inert toward p38 were ineffective. Expression of an inducible, dominant-negative p38 mutant in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake. GLUT4 translocation to the cell surface, immunodetected on plasma membrane lawns of 3T3-L1 adipocytes or on intact L6-GLUT4myc myotubes, was not altered by chemical or molecular inhibition of p38. We propose that p38 contributes to enhancing GLUT4 activity, thereby increasing glucose uptake. In addition, the azaazulene class of inhibitors described will be useful to decipher cellular actions of p38 and JNK.  相似文献   

10.
We investigated the role of cdc42, a Rho GTPase family member, in insulin-induced glucose transport in 3T3-L1 adipocytes. Microinjection of anti-cdc42 antibody or cdc42 siRNA led to decreased insulin-induced and constitutively active G(q) (CA-G(q); Q209L)-induced GLUT4 translocation. Adenovirus-mediated expression of constitutively active cdc42 (CA-cdc42; V12) stimulated 2-deoxyglucose uptake to 56% of the maximal insulin response, and this was blocked by treatment with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin, or LY294002. Both insulin and CA-G(q) expression caused an increase in cdc42 activity, showing that cdc42 is activated by insulin and is downstream of G alpha(q/11) in this activation pathway. Immunoprecipitation experiments showed that insulin enhanced a direct association of cdc42 and p85, and both insulin treatment and CA-cdc42 expression stimulated PI3-kinase activity in immunoprecipitates with anti-cdc42 antibody. Furthermore, the effects of insulin, CA-G(q), and CA-cdc42 on GLUT4 translocation or 2-deoxyglucose uptake were inhibited by microinjection of anti-protein kinase C lambda (PKC lambda) antibody or overexpression of a kinase-deficient PKC lambda construct. In summary, activated cdc42 can mediate 1) insulin-stimulated GLUT4 translocation and 2) glucose transport in a PI3-kinase-dependent manner. 3) Insulin treatment and constitutively active G(q) expression can enhance the cdc42 activity state as well as the association of cdc42 with activated PI3-kinase. 4) PKC lambda inhibition blocks CA-cdc42, CA-G(q), and insulin-stimulated GLUT4 translocation. Taken together, these data indicate that cdc42 can mediate insulin signaling to GLUT4 translocation and lies downstream of G alpha(q/11) and upstream of PI3-kinase and PKC lambda in this stimulatory pathway.  相似文献   

11.
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.  相似文献   

12.
Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCζ and PKCλ) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKCλ in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKCλ (λKD or λΔNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKCλ, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by λKD or λΔNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKCλ was ~50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKCλ mutant that lacks the pseudosubstrate domain (λΔPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of λΔPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKCλ. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKCλ pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

13.
Activation of p85/p110 type phosphatidylinositol kinase is essential for aspects of insulin-induced glucose metabolism, including translocation of GLUT4 to the cell surface and glycogen synthesis. The enzyme exists as a heterodimer containing a regulatory subunit (e.g. p85alpha) and one of two widely distributed isoforms of the p110 catalytic subunit: p110alpha or p110beta. In the present study, we compared the two isoforms in the regulation of insulin action. During differentiation of 3T3-L1 cells into adipocytes, p110beta was up-regulated approximately 10-fold, whereas expression of p110alpha was unaltered. The effects of the increased p110 expression were further assessed by expressing epitope tagged p110beta and p110alpha in 3T3-L1 cells using adenovirus transduction systems, respectively. In vitro, the basal lipid kinase activity of p110beta was lower than that of p110alpha. When p110alpha and p110beta were overexpressed in 3T3-L1 adipocytes, exposing cells to insulin induced each of the subunits to form complexes with p85alpha and tyrosine-phosphorylated IRS-1 with similar efficiency. However, whereas the kinase activity of p110beta, either endogenous or exogeneous, was markedly enhanced by insulin stimulation, only very small increases of the activity of p110alpha were observed. Interestingly, overexpression of p110beta increased insulin-induced glucose uptake by 3T3-L1 cells without significantly affecting basal glucose transport, whereas overexpression of p110alpha increased both basal and insulin-stimulated glucose uptake. Finally, microinjection of anti-p110beta neutralizing antibody into 3T3-L1 adipocytes abolished insulin-induced translocation of GLUT4 to the cell surface almost completely, whereas anti-p110alpha neutralizing antibody did only slightly. Together, these findings suggest that p110beta plays a crucial role in cellular activities evoked acutely by insulin.  相似文献   

14.
Phosphatidylinositol 3-kinase (PI3K) activation is necessary for many insulin-induced metabolic and mitogenic responses. However, it is unclear whether PI3K activation is sufficient for any of these effects. To address this question we increased PI3K activity in differentiated 3T3-L1 adipocytes by adenovirus-mediated expression of both the inter-SH2 region of the regulatory p85 subunit of PI3K (iSH2) and the catalytic p110 alpha subunit (p110). Coexpression resulted in PI3K activity that exceeded insulin-stimulated activity by two- to fivefold in cytosol, total membranes, and the low density microsome (LDM) fraction, the site of greatest insulin stimulation. While insulin increased glucose transport 15-fold, coexpression of iSH2-p110 increased transport (5.2-) +/- 0.7-fold with a parallel increase in GLUT4 translocation to the plasma membrane. Constitutive activation of PI3K had no effect on maximally insulin-stimulated glucose transport. Neither basal nor insulin-stimulated activity of glycogen synthase or mitogen-activated protein kinase was altered by iSH2-p110 coexpression. DNA synthesis was increased twofold by insulin in control 3T3-L1 adipocytes transduced with beta-galactosidase-encoding recombinant adenovirus, while iSH2-p110 coexpression increased DNA synthesis fivefold. These data indicate that (i) increased PI3K activity is sufficient to activate some but not all metabolic responses to insulin, (ii) activation of PI3K to levels exceeding the effect of insulin in adipocyte LDM results in only a partial stimulation of glucose transport, and (iii) increased PI3K activity in the absence of growth factor or oncoprotein stimulation is a potent stimulus of DNA synthesis.  相似文献   

15.
In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by approximately 33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCzeta/lambda, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4-myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.  相似文献   

16.
Insulin acutely stimulated glucose uptake in rat primary brown adipocytes in a PI3-kinase-dependent but p70S6-kinase-independent manner. Since Akt represents an intermediate step between these kinases, this study investigated the contribution of Akt to insulin-induced glucose uptake by the use of a chemical compound, ML-9, as well as by transfection with a dominant-negative form of Akt (DeltaAkt). Pretreatment with ML-9 for 10 min completely inhibited insulin stimulation of (1) Akt kinase activity, (2) Akt phosphorylation on the regulatory residue Ser473 but not on Thr308, and (3) mobility shift in Akt1 and Akt2. However, ML-9 did not affect insulin-stimulated PI3-kinase nor PKCzeta activities. In consequence, ML-9 precluded insulin stimulation of glucose uptake and GLUT4 translocation to plasma membrane (determined by Western blot), without any effect on the basal glucose uptake. Moreover, DeltaAkt impaired insulin stimulation of glucose uptake and GFP-tagged GLUT4 translocation to plasma membrane in transiently transfected immortalised brown adipocytes and HeLa cells, respectively. Furthermore, ML-9 treatment for 6 h down-regulated insulin-induced GLUT4 mRNA accumulation, without affecting GLUT1 expression, in a similar fashion as LY294002. Indeed, co-transfection of brown adipocytes with DeltaAkt precluded the transactivation of GLUT4-CAT promoter by insulin in a similar fashion as a dominant-negative form of PI3-kinase. Our results indicate that activation of Akt may be an essential requirement for insulin regulation of glucose uptake and GLUT4 gene expression in brown adipocytes.  相似文献   

17.
Insulin stimulates trafficking of GLUT4 to the cell surface for glucose uptake into target cells, and phosphorylation of Ser703 of the Na+/H+ exchanger NHE1, which activates proton efflux. The latter has been proposed to facilitate optimal glucose uptake into cardiomyocytes. We found that the insulin-stimulated phosphorylation of Ser703 of NHE1 is mediated by p90RSK but not directly coupled to glucose uptake in 3T3-L1 adipocytes in the short-term. Inhibiting Erk1/2 activation prevented NHE1 phosphorylation but not glucose uptake in 3T3-L1 adipocytes. In contrast, both NHE1 phosphorylation and insulin-stimulated uptake of glucose into 3T3-L1 adipocytes were blocked by inhibitors of the N-terminal kinase domain of p90RSK, namely BI-D1870 and SL0101, but not the FMK inhibitor of the C-terminal kinase domain of p90RSK, though in our hands FMK did not inhibit p90RSK in 3T3-L1 adipocytes. Further experiments were consistent with phosphorylation of AS160 by PKB/Akt mediating insulin-stimulated trafficking of GLUT4 to the plasma membrane. BI-D1870 and SL0101 however, inhibited glucose uptake without blocking GLUT4 translocation. While BI-D1870 partially inhibited insulin-stimulated PKB activation in these cells, this only partially inhibited AS160 phosphorylation and did not block GLUT4 trafficking, suggesting that p90RSK might regulate glucose transport after GLUT4 translocation. Moreover, BI-D1870 also prevented PMA-induced glucose transport in 3T3-L1 adipocytes further suggesting a role for p90RSK in regulating uptake of glucose into the cells. Kinetic experiments are consistent with SL0101 being a direct competitor of 2-deoxyglucose entry into cells, and this compound might also inhibit uptake of glucose into cells via inhibiting p90RSK, as revealed by comparison with the inactive form of the inhibitor. Taken together, we propose that BI-D1870 and SL0101 might exert their inhibitory effects on glucose uptake in 3T3-L1 adipocytes at least partially through a p90RSK dependent step after GLUT4 becomes associated with the plasma membrane.  相似文献   

18.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

19.
NCX 4016 is a nitric oxide (NO)-donating derivative of acetylsalicylic acid. NO and salicylate, in vivo metabolites of NCX 4016, were shown to be potential actors in controlling glucose homeostasis. In this study, we evaluated the action of NCX 4016 on the capacity of 3T3-L1 adipocytes to transport glucose in basal and insulin-stimulated conditions. NCX 4016 induced a twofold increase in glucose uptake in parallel with the translocation of the glucose transporters GLUT1 and GLUT4 to the plasma membrane, leaving unaffected their total expression levels. Importantly, NCX 4016 further increased glucose transport induced by a physiological concentration of insulin. The stimulatory effect of NCX 4016 on glucose uptake appears to be mediated by its NO moiety. Indeed, it is inhibited by a NO scavenger and treatment with acetylsalicylic or salicylic acid had no effect. Although NO is involved in the action of NCX 4016, it did not mainly depend on the soluble cGMP cyclase/protein kinase G pathway. Furthermore, NCX 4016-stimulated glucose transport did not involve the insulin-signaling cascade required to stimulate glucose transport. NCX 4016 induces a small activation of the mitogen-activated protein kinases p38 and c-Jun NH(2)-terminal kinase and no activation of other stress-activated signaling molecules, including extracellular signal-regulated kinase, inhibitory factor kappaB, or AMP-activated kinases. Interestingly, NCX 4016 modified the content of S-nitrosylated proteins in adipocytes. Taken together, our results indicate that NCX 4016 induced glucose transport in adipocytes through a novel mechanism possibly involving S-nitrosylation. NCX 4016 thus possesses interesting characteristics to be considered as a candidate molecule for the treatment of patients suffering from metabolic syndrome and type 2 diabetes.  相似文献   

20.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号