首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mice primed with picrylsulfonic acid (PSA) and then painted on the skin with picryl chloride produce antigen-specific T suppressor factor (TsF). In contrast unpainted primed mice fail to produce active TsF. This is not due to the absence of the antigen binding part of TsF but to the absence of a cofactor. This cofactor is (a) antigen nonspecific and occurs in potassium chloride extract of normal spleen cells. It also occurs in the 24 hr supernatant of normal cells modified by haptenisation with picryl or the unrelated NP antigen (4-hydroxy-3-nitrophenylacetyl), and in preparations of conventional TsF (PSA/PCl) from painted PSA-primed mice; (b) bears I-J determinants; and (c) is produced by Lyt-1+2(-)I-J+ cells. The antigen binding molecule occurs alone in the supernatant of PSA-primed mice. It lacks I-J determinants and has a molecular weight around 35,000 and 75,000. It is produced by Lyt-1(-)2+I-J+ cells and is only active when complemented by cofactor. However, the complementation is genetically restricted and the restriction maps to the I-J subregion of the MHC.  相似文献   

2.
BDF1 mice were given three i.v. injections of ovalbumin (OA) to induce antigen-specific suppressor T cells. Incubation of spleen cells of OA-treated mice with homologous antigen resulted in the formation of IgE-suppressive factor. This factor was not derived from antigen-specific suppressor T cells, but suppressor T cells were essential for determining the nature of IgE-binding factors formed. In the spleen cells of OA-treated mice, antigenic stimulation of antigen-primed Lyt-1+ (helper) T cells resulted in the formation of inducers of IgE-binding factor, whereas Lyt-2+, I-J+ T cells released glycosylation-inhibiting factor (GIF), and these two factors, in combination, induced unprimed Lyt-1+ T cells to form IgE-suppressive factor. The role of GIF is to inhibit the assembly of N-linked oligosaccharides on IgE-binding factors during their biosynthesis, and thereby provide them with a biologic activity: suppression of the IgE response. Under the experimental conditions employed, GIF was released spontaneously from antigen-specific suppressor T cells. However, antigenic stimulation of the cells enhanced the release of the factor. GIF from antigen-specific suppressor T cells has a m.w. of 25,000 to 30,000, as estimated by using gel filtration, binds to anti-I-J alloantibodies and to a monoclonal antibody specific for lipomodulin, and has affinity for specific antigen. The possible relationship between antigen-specific GIF and antigen-specific suppressor factors is discussed.  相似文献   

3.
Murine antibody responses to heterologous insulins are controlled by MHC-linked immune response genes. Although nonresponder mice fail to make antibody when injected with nonimmunogenic variants of insulin, we have recently shown that nonimmunogenic variants stimulate radioresistant, Lyt- 1+2- helper T cells that support secondary antibody responses. However, the helper activity can not be detected unless dominant, radiosensitive Lyt-1-2+, I-J+ suppressor T cells are removed. In this paper we report that extracts of primed Lyt-2+ suppressor T cells contain insulin-specific suppressor factors (TsF) that are capable of replacing the activity of suppressor T cells in vitro. The activity of these factors is restricted by MHC-linked genes that map to the I-J region, and immunoadsorption studies indicated that they bind antigen and bear I-J-encoded determinants. Insulin-specific TsF consists of at least two chains, one-bearing I-J and the other the antigen-binding site. Furthermore, mixing of isolated chains from different strains of mice indicates that the antigenic specificity is determined by the antigen-binding chain and the MHC restriction by the H-2 haplotype of the source of the non-antigen-binding, I-J+ chain. Moreover, mixtures containing antigen-binding chain from allogeneic cell donors and I-J+ chain from responder cell donors have activity in cultures containing responder lymphocytes. This suggests that preferential activation of suppressor T cells, rather than differential sensitivity to suppression, results in the nonresponder phenotype to insulin.  相似文献   

4.
Lyt-1+2+ hapten-specific T suppressor cells (Ts) from mice injected and then painted with picryl or oxazolone derivatives produce hapten-specific T suppressor factors (TsF) in vitro. Stimulation by painting with contact sensitizer (which need not be specific) gives rise to Lyt-1-2+, I-J+, cyclophosphamide-sensitive T acceptor cells (Tacc). When the Tacc population is armed with TsF and then is exposed to specific antigen in the context of I-J-controlled determinants (antigen-presenting, haptenized spleen cells and Ts sharing the same I-J subregion), a nonspecific inhibitor of DNA synthesis (nsINH) appears in the supernatant. This inhibitor suppresses the primary DNA synthetic response to concanavalin A, lipopolysaccharide, and alloantigens in both syngeneic and allogeneic lymphocytes. The nsINH is only effective when added to lymphocyte cultures less than 8 hr after the stimulation with concanavalin A. The nsINH, however, affects neither primary nor secondary cytotoxicity in vitro. These data suggest the mouse immune system is capable of selective regulation of the response to specific antigen by the production of nonspecific soluble suppressor factor(s).  相似文献   

5.
Mouse strains carrying the kappa allele at loci A beta, A alpha, E beta, and E alpha are nonresponders to lactate dehydrogenase B (LDHB) and to allotypic determinants of IgG2a myeloma proteins (for example, UPC10 used in this study). The nonresponsiveness to these antigens is caused by T suppressor (Ts) cells that prevent antigen-primed T helper (Th) cells from proliferating. We demonstrate here that monoclonal antibodies specific for an A region-controlled molecule selectively expressed on T cells (A-T) are capable of inducing anti-LDHB and anti-UPC10 responses of primed T cells from nonresponder strains. A monoclonal anti-J antibody that cross-reacts with the A-T molecule also induces responsiveness, whereas another J-specific antibody that lacks this cross-reactivity fails to do so. The mechanism of response induction is blocking of the interaction between the Ts cell or its factor (TsF) and the target of suppression, the antigen-specific Lyt-1+2- (Th) cell. The blocking occurs at the level of the Ts cell and the TsF. The data indicate that Ts cells and TsF carry a unique, A region-controlled molecule that is not only functionally analogous but also serologically similar to the J molecule.  相似文献   

6.
The reactivity of Lyt-2+ or L3T4+ T cells stimulated with either mutant class I or class II MHC alloantigens was studied. Whereas stimulation with class I MHC antigens induced only Lyt-2+ T cells to proliferate and to secrete IL 2, stimulation with class II MHC alloantigens induced L3T4+ but not Lyt-2+ T cells. When the frequencies of precursors of IL 2-secreting T lymphocytes (IL 2TL-p) were determined by limiting dilution analyses, class I MHC-reactive Lyt-2+ T cells displayed frequencies (f = 1/200) as high in magnitude as those within class II MHC-reactive L3T4+ (f = 1/100). Clonally developing IL 2TL of either T cell subset were antigen-specific, as shown in split-culture experiments. Whereas L3T4+ helper TL could be induced to specific IL 2 secretion over a long time period (days 3 to 9), Lyt-2+ TL showed a marked time optimal on day 4; thereafter, the number of TL colonies inducible to secrete IL 2 decreased steadily. IL 2 production and IL 2TL-p frequencies of unseparated T responder cells were not the numerical superposition of the two individual T cell subsets (Lyt-2+ + L3T4+); the latter finding is likely to reflect regulatory influences of Lyt-2+ T cells on IL 2-secreting L3T4+ T cells.  相似文献   

7.
Peripheral lymph node cells from C3H mice that were fed and injected with bovine serum albumin (REG cells) demonstrate an impaired proliferative response to antigenic stimulation in vitro compared to cells from mice only injected with BSA. To determine whether suppressor cells contributed to this enterically induced impairment of systemic T cell responses, REG cells were pretreated with various monoclonal antibodies and complement (C), and were then co-cultured with antigen-reactive indicator T cells (IND) from parenterally immunized mice. Proliferation of IND cells [( 3H]thymidine uptake) was suppressed only if REG cells were treated with anti-Lyt-2 and C before co-culture. The ability of anti-Lyt-1 plus anti-Lyt-2 and C treatment to abrogate suppression suggested that the suppressor effect was due to an Lyt-1+, 2- REG cell. Suppression was independent of Lyt-2+ IND cells, and was observed at different antigen concentrations, cultivation times, and cell densities. The cells responsible for suppressor activity were radiosensitive, nylon wool nonadherent, and antigen specific. These data suggest that an Lyt-1+, 2- T cell could be an important component in mediating enterically induced regulation of systemic T cell responses.  相似文献   

8.
A single injection of TNP-labeled mouse gamma-globulin (TNP-IgG) can render the contact sensitivity response of mice resistant to suppressor cells (Tsc) and their biologically active cellfree products (TsF). Lyt-1 T cells of mice treated with TNP-IgG can protect the adoptive contact sensitivity response of immune cells from the antigen-specific suppressive effect produced by the addition of antigen-specific TsF or Tsc. When T cells of TNP-IgG-treated mice are put into culture, they produce an antigen-specific contrasuppressor factor (TcsF) that can replace the activity of the cells. When immune cells are preincubated in vitro with TcsF, they become refractory to Tsc and TsF added subsequently. The TcsF, however, has no ability to restore responsiveness to immune cells that had been previously exposed to TsF. The TcsF binds specifically to TNP, expresses an I-J-controlled determinant, and does not express standard determinants found on mouse Ig. The treatment that primes the contrasuppressor system to protect the contact sensitivity response also reportedly renders the antibody-producing system tolerant, (i.e., produces so called "split tolerance"). These results are discussed in light of the possibility that the contrasuppressor system can be responsible for so called isotype-specific immunity by rendering one arm of the immune system resistant to generalized suppressive mechanisms.  相似文献   

9.
The synthetic polymers L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) and L-glutamic acid50-L-tyrosine50 (GT) stimulate specific suppressor T cells in certain strains of mice. Extracts from these T cells contain factors (TsF) that inhibit GAT- or GT-specific antibody responses by normal spleen cells or proliferative responses by primed T cells. We constructed T cell hybridomas that constitutively produce GAT-TsF or GT-TsF, which functionally and serologically are identical to factors extracted from suppressor T cells. In this report we demonstrate that monoclonal GT-TsF can induce specific unresponsiveness in vivo or in vitro and that this unresponsiveness is due to development of second-order antigen-specific suppressor T cells. T cell hybridomas were constructed by fusion of BW5147 with GT-TsF1 induced second-order suppressor T cells and clones that produced suppressor factor (GT-TsF2) were isolated and characterized. GT-TsF2 differs from the GT-TsF1 used to induce it in that GT-TsF1 acts across allogeneic barriers whereas GT-TsF2 does not. This restriction is controlled by genes in the H-2 gene complex and maps to the I-J subregion. GT-TsF2 is antigen-specific in suppressive activity and also in its antigen-binding site(s). Thus, GT-TsF2 closely resembles the carrier-specific, I-J+, genetically restricted factor described by Tada and his colleagues. Because GT-TsF2 was induced by GT-TsF1, we suggest cells producing GT-TsF1 are an early cell in the pathway of suppression, and that this cell is required for the activation of antigen-specific, MHC-restricted TsF.  相似文献   

10.
A T cell hybridoma (Fd11) has been produced from B10.D2 mice that secretes a putative antigen-specific T suppressor factor (TsF). The TsF is isolable from culture supernatants of Fd11 by affinity purification over columns containing either a monoclonal antibody (B16G) shown previously to be capable of binding murine TsF or ferredoxin (Fd), the nominal antigen to which the Fd11 TsF binds. Specificity of the Fd11 TsF for Fd was established by comparing it to another TsF isolated by us (A10 TsF) in a sandwich ELISA, and by demonstrating the specific reactivity to Fd of the hybridoma in calcium flux studies. The Fd11 affinity-purified TsF was shown to contain two major unique components with m.w. in the region of 80,000 and 35,000 when run on reducing polyacrylamide gels in the presence of sodium dodecyl sulphate. Specific immunosuppressive properties of Fd11 were demonstrated when Fd11 TsF (10 micrograms) was injected i.v. into Fd-primed syngeneic mice at the time of antigen boost. Fd11 TsF specifically and significantly diminished the secondary antibody response to Fd in DBA/2 mice.  相似文献   

11.
Herein we described the direct suppressive effects of a monoclonal T cell hybridoma-derived, DNP-specific suppressor T cell factor (26.10.2 TsF) on the local transfer of delayed-type hypersensitivity (DTH) by a DNP-specific BALB/c T cell clone (dD1.9). The L3T4+, Lyt-2- dD1.9 T cell clone proliferated in response to DNP-OVA and DNBS, but not TNP-OVA or TNBS, in association with I-Ed determinants present on antigen-presenting cells. Similarly, local injection of histopaque-purified dD1.9 cell blasts resulted in DNP-specific, radioresistant, I-Ed-restricted, mononuclear cell-rich ear swelling responses. Incubation in 26.10.2 TsF specifically suppressed local transfer of DNP-specific DTH by dD1.9, but not local DTH responses transferred by BALB/c T cell clones specific for TNP or GAT. The suppressive effect of 26.10.2 TsF correlated with targeting on DNP-major histocompatibility complex determinants associated with the DTH T cell (TDH) targets. 26.10.2 TsF-mediated suppression was most pronounced after exposure of dD1.9 target cells to antigen (after the stimulation phase of the T cell clone maintenance procedure), and greatly reduced when dD1.9 was cultured for long periods in the absence of DNP (after the rest phase of clone maintenance). In additional support of this hypothesis, GAT-specific TDH, normally resistant to 26.10.2 TsF-mediated suppression, were rendered susceptible to suppression after surface DNPylation. The results demonstrate a direct, antigen-specific, effector phase regulatory effect of a monoclonal TsF on a cloned, antigen-specific T cell target, and strongly suggest that suppression is mediated via targeting on DNP determinants associated with the TDH target. Simplification of complex Ts circuitry operating in suppression of the efferent limb of DTH by the use of monoclonal TsF and cloned T cell targets should provide a basis for the future study of the molecular mechanisms of immune suppression.  相似文献   

12.
The role of Ia molecules in the T cell proliferative response to class I (H2K/D) MHC alloantigens was examined. Proliferation in response to allo-K/D antigenic stimulation, but not to allo-Ia, was markedly inhibited by the addition of monoclonal anti-responder Ia antibodies to cultures in the absence of C. This anti-Ia blocking was observed in responses against both allelic and mutant class I antigens. Partial blocking was observed by using an anti-I-A or anti-I-E monoclonal antibody alone, whereas marked inhibition was seen with these two reagents together when the proliferating cells derived from a responder strain expressing both IA and IE gene products. Syngeneic Ia molecules appear to function as restriction elements, because they are required even in the presence of a source of exogenous second signal, phorbol myristic acetate or IL 1. The K/D-specific response required a responding cell that bears both Lyt-1 and -2 antigens, whereas responses generated to alloantigenic differences, including the I region, require only an Ly-1+ cell. The implications of these data with respect to the repertoire of the alloreactive proliferating T cell and the expression of the Lyt-2 antigen by such cells are discussed.  相似文献   

13.
An interleukin 2 (IL 2)-dependent, keyhole limpet hemocyanin (KLH)-specific, mouse suppressor T cell clone, 3D10, was found to produce interleukin 3 (IL 3) and gamma-interferon (IFN-gamma) in response to T cell mitogens Con A and PHA. Different from KLH-specific suppressor factor (TsF) that was spontaneously released into the medium when cultured in IL 2-containing conditioned medium, the production of IL 3 and IFN-gamma was induced by mitogenic stimuli. IL 3, IFN-gamma, and TsF were separable by gel filtration through a Sephadex G-100 column, being recovered in fractions of m.w. 25,000 to 30,000, 45,000 to 50,000 and 60,000 to 70,000, respectively. On the other hand, minimum size of IL 3 and IFN-gamma were shown to be about 25,000 and 20,000, respectively, by determining the lymphokine activities contained in the extracts from slices of SDS gels. These results indicate that IFN-gamma was present as a homodimer or hetero-complex with another carrier protein(s), whereas IL 3 was present as a monomeric form. A highly positive correlation (a correlation coefficient r = 0.96) between the titers of IL 3 and IFN-gamma produced by seven subclones derived from 3D10 was obtained, suggesting that IL 3 and IFN-gamma are induced by a process with a common mechanism. 3D10 also produced IL 3 and IFN-gamma when cultured with its specific antigen, KLH, in the presence of antigen-presenting cells. When Con A-stimulated 3D10 cells were labeled with L-[35S]methionine, we found that at least three proteins, with m.w. of 35,000, 25,000, and 20,000, were specifically released into medium by the stimulation. The latter two may be IL 3 and IFN-gamma described above, respectively, because of the similarities in m.w.  相似文献   

14.
A system is presented in which the in vitro response to sheep red blood cells (SRBC) can be regulated using antigenic determinants coupled to SRBC and T cell-derived antigen-binding molecules (T-ABM) directed against the coupled determinants. T suppressor-inducer factors (TsiF's) are composed of two molecules, one of which is a T-ABM and one which bears I-J determinants (I-J+ molecule). Using two purified T-ABM which have not previously been shown to have in vitro activity, we produced antigen-specific TsiF's which were capable of inducing the suppression of the anti-SRBC response. Suppression was found to require both the T-ABM and the I-J+ molecule, SRBC conjugated with the antigen for which the T-ABM was specific, and a population of Ly-2+ T cells in the culture. Two monoclonal TsiF (or TsF1) were demonstrated to induce suppression of the anti-SRBC response in this system, provided the relevant antigen was coupled to the SRBC in culture. The results are discussed in terms of the general functions of T-ABM in the immune system. This model will be useful in direct, experimental comparisons of the function of T-ABM and suppressor T cell factors under study in different systems and laboratories.  相似文献   

15.
The roles of helper and suppressor T cells in the development and expression of antibody responses to GAT were studied in (responder X responder)F1 mice immunized with parental GAT-M phi. Spleen cells from (B10 X B10.D2)F1 mice primed in vivo with B10 or B10.D2 GAT-M phi developed secondary in vitro plaque-forming cell (PFC) responses only when stimulated by GAT-M phi syngeneic with the GAT-M phi used for in vivo priming. By contrast, virgin F1 spleen cells developed comparable primary PFC responses to both parental GAT-M phi Co-culture of T cells from (B10 X B10.D2)F1 mice primed in vivo by B10 GAT-M phi with virgin (B10 X B10.D2)F1 spleen cells demonstrated the presence of suppressor cells that inhibited the primary response of virgin spleen cells stimulated by B10.D2 GAT-M phi. Spleen cells from (B10 X B10.D2)F1 mice primed in vivo with B10.D2 GAT-M phi had suppressor T cells that suppressed primary responses stimulated by B10 GAT-M phi. The suppressor T cell mechanism was composed of at least two regulatory T cell subsets. Suppressor-inducer T cells were Lyt-2-, I-J+ and must be derived from immune spleen cells. Suppressor-effector T cells can be derived from virgin or immune spleens and were Lyt-2+ cells. When the suppressor mechanism was disabled by treatment with 1000 rad gamma irradiation or removal of Lyt-2+ cells, Lyt-2-helper T cells from (B10 X B10.D2)F1 mice primed with B10 GAT-M phi provided radioresistant help to virgin F1 B cells stimulated by B10 but not B10.D2 GAT-M phi. Suppressor inducer Lyt-2-,I-J+ cells from B10 GAT-M phi-primed (B10 X B10.D2)F1 mice were separated from the primed Lyt-2-,I-J-helper T cells. In the presence of Lyt-2+ suppressor effector cells, the Lyt-2-,I-J+ suppressor-inducer suppressed the primary response of virgin spleen or virgin T plus B cells stimulated by both B10 and B10.D2 GAT-M phi. Therefore, suppressor T cells were able to suppress primary but not secondary GAT-specific PFC responses stimulated by either parental GAT-M phi. These results showed that immunization of (responder X responder)F1 mice with parental GAT-M phi results in the development of antigen-specific helper and suppressor T cells. The primed helper T cells were radioresistant and were genetically restricted to interact with GAT in association with the major histocompatibility complex antigens of the M phi used for in vivo priming.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The proliferative response of subpopulations of corticoresistant thymocytes (CRT) to phorbol-12-myristate-13-acetate (PMA) + interleukin 2 (IL 2) was investigated. Thymocyte subpopulations were selected by the indirect "panning" technique, and their purity was checked by cytofluorometry. Microcultures were set up with an optimal concentration of PMA, EL4 supernatant, or pure IL 2 obtained by recombinant DNA technology (r-IL 2) in the presence or in the absence of accessory splenic adherent cells (SAC). Under these conditions, only the Lyt-2+ CRT proliferated, and this response was IL 2-dose-dependent and was increased by accessory cells. When the calcium ionophore A23187 was added to the cultures, the proliferation of L3T4+ CRT was greatly increased. These results were confirmed by cultures at limiting dilution of positively selected Lyt-2+ and L3T4+ subpopulations of CRT at optimal concentrations of PMA, r-IL 2, A23187, and accessory cells. These results are consistent with the idea that two signals are necessary to activate L3T4+ CRT, whereas only IL 2 is necessary for PMA-induced proliferation of Lyt-2+ CRT. Finally, unlike the case of lectin-induced proliferation of Lyt-2+ and L3T4+ CRT, the presence of accessory cells or cell-cell contact is important for optimal response to PMA + IL 2.  相似文献   

17.
Proliferative responses of peripheral blood mononuclear cells (PBMC) to Mycobacterium leprae and bacillus Calmette Guerin-derived purified protein derivative (PPD) were studied in the presence or absence of interleukin 2 (IL 2) in high M. leprae responders (tuberculoid leprosy patients and healthy subjects) and low M. leprae responders (lepromatous leprosy patients). High responders in most cases developed a strong proliferative response to both antigens in the absence of IL 2. Additional IL 2 and restimulation with antigen plus autologous antigen-presenting cells (APC) allowed the derivation of antigen-specific T cell lines. The lines were assayed for proliferative responses to several mycobacterial antigens. Both PPD and M. leprae-triggered T cell lines exhibited a good proliferative response to either antigen and showed in addition a broad cross-reactivity with other mycobacteria, suggesting a preferential T cell response to epitopes shared by several mycobacterial species. Within the lepromatous group, 50% of the patients studied could mount a proliferative response to PPD antigen in the absence of IL 2, but none of them was able to do so with M. leprae antigen. The addition of IL 2 increased the number of positive responders to PPD in this group, and in some patients IL 2 was able to restore M. leprae reactivity as well, suggesting that IL 2 had overcome a suppressor mechanism. PPD and M. leprae-triggered T cell lines were obtained from these subjects (with IL 2 added from the beginning of the culture when required). M. leprae lines exhibited variable and unstable pattern of specificity, most lines exhibiting, at least transiently, a cross-reactive response to other mycobacteria, but some displaying only M. leprae-specific response. In contrast, PPD lines from these subjects consistently exhibited a good response to PPD, a lesser response to various other mycobacteria and no response to M. leprae, a pattern differing from that obtained with PPD lines of high M. leprae responders. Co-cultures of irradiated lepromatous PPD triggered T cell lines with fresh autologous PBMC non-specifically reduced the proliferative response of the latter to PPD, as well as to unrelated antigens. A similar suppression was also observed when PPD lines from one of the tuberculoid patients were assayed. PPD and M. leprae T cell lines from both high and low responders initially exhibited the same CD4+ CD8- phenotype. In all cases, antigenic specificity declined and could not be maintained after 5 to 8 wk of continuous culture, a change associated with the progressive appearance of CD8+ and Leu8+ cells.  相似文献   

18.
Approximately 30% of cytolytic Lyt-2+ clones from primed mice are able to proliferate autonomously, i.e., independent of IL 2 derived from Lyt-2- cells after antigenic stimulation. H-2K- or -D-restricted induction of Lyt-2+ cells to autonomous proliferation requires Ia+ stimulator cells. A strict correlation was observed between the ability of Lyt-2+ clones to proliferative autonomously and to induce DH. Eventually, the growth of all Lyt-2+ cytolytic clones becomes dependent on exogenous IL 2, and their ability to induce DH is lost. Small Lyt-2+ cells can also be induced in primary cultures by antigen or concanavalin A to proliferate in the absence of exogenous IL 2. The frequency of autonomously proliferating small Lyt-2+ cells is the same as that of small Lyt-2+ cells proliferating in the presence of exogenous IL 2. IL 2 derived from Lyt-2- cells can augment proliferation of Lyt-2+ cells, but is not obligatory.  相似文献   

19.
Our previous studies had demonstrated that depletion of endogenous natural killer (NK) cells resulted in an augmented primary antibody response in vivo and in vitro. We have now examined the effect of NK cell depletion on the in vitro secondary response to antigen. Treatment of primed murine spleen cells with anti-NK-1.1 allo-antibody and complement before culture resulted in a significant increase in the magnitude of the antigen-specific plaque-forming cell (PFC) response. This treatment did not affect the proportions of Lyt-2+, L3T4+, or sIg+ cells in the population, however, indicating that the augmentation in PFC was not due to changes in the ratio of T to B cells. Removal of endogenous NK cells had a greater effect on the IgG (indirect) PFC response (100 to 200% increase) than on the IgM (direct) PFC response (25 to 50% increase). In contrast, removal of Lyt-2+ cells before culture affected the IgM and IgG responses similarly. Moreover, the kinetics of augmentation differed between cultures depleted of Lyt-2+ cells and those depleted of NK-1.1+ cells. NK cells appeared to act earlier in the response than did T suppressor cells. The NK-1.1+ cells involved in antibody regulation were not involved in the generation of the in vitro derived T suppressor cells. The conclusion that the regulation of the antibody response by NK-1.1+ cells is distinct from that involving T suppressor cells was confirmed in experiments in which removal of both regulatory cell populations resulted in an increase in PFC that was greater than in cultures depleted of either NK or T suppressor cells.  相似文献   

20.
The findings of previous studies in this laboratory demonstrating that conjugates of human monoclonal (myeloma) IgG (HIgG) and monomethoxypolyethylene glycol (mPEG) were able to induce in mice antigen-specific tolerance and CD8+ suppressor T (Ts) cells were confirmed in the present study. An extract (TsF) of a nonhybridized clone of Ts cells (viz., clone 23.32), which had been derived from spleen cells of mice tolerized with HIgG(mPEG)26, was shown to possess antigen-specific suppressive activity. This monoclonal TsF was able to specifically suppress in vitro antibody formation only if it was present from the beginning of the culture. From the results of the cellular dissection of the system used it was concluded that (i) the TsF had no effect on fully differentiated primed B cells or plasma cells, and (ii) the TsF inactivated carrier-primed Th cells when the culture contained concomitantly naive CD8+ T cells, accessory cells, and antigen. These data support the view that the monoclonal TsF exerted its downregulating effect on Th cells only if it could first interact with a CD8+ T cell, in the presence of accessory cells and antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号