首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The plant-specific expansin proteins constitute an ancient and major gene family known to have roles in regulating diverse biological processes in plants. Although the functions of many expansin genes have been identified in wheat and other species, little is known about the evolution and genomic locations of the expansin genes in wheat (Triticum aestivum). In this study, a total of 87 expansin genes were identified in the wheat genome, including 52 EXPAs, 42 EXPBs and 4 EXLAs. The EXLB gene was not found in the wheat genome. Phylogenetic tree and comparative analysis revealed amplification of the EXPBs in rice, maize and wheat. The predicted wheat expansins were distributed across 14 of 21 chromosomes with different densities, 3 tightly co-located clusters and 15 paralogous pairs, indicating that tandem duplication and segmental duplication events also played roles in the evolution of expansins in wheat. In addition, the gene structures and conserved protein domains of wheat expansins suggest high levels of conservation within the phylogenetic subgroups. Analysis of a published microarray database showed that most wheat expansin genes exhibit different expression levels in different tissues and developmental stages. To our knowledge, this is the first report of a genome-wide analysis of the wheat expansin gene family, which should provide valuable information for further elucidating the classification and putative functions of the entire gene family.  相似文献   

3.
Enzymes of the chalcone synthase (CHS) family catalyze the generation of multiple secondary metabolites in fungi, plants, and bacteria. These metabolites have played key roles in antimicrobial activity, UV protection, flower pigmentation, and pollen fertility during the evolutionary process of land plants. We performed a genome-wide investigation about CHS genes in rice (Oryza sativa). The phylogenetic relationships, gene structures, chromosomal locations, and functional predictions of the family members were examined. Twenty-seven CHS family genes (OsCHS0127) were identified in the rice genome and were found to cluster into six classes according to their phylogenetic relationships. The 27 OsCHS genes were unevenly distributed on six chromosomes, and 17 genes were found in the genome duplication zones with two segmental duplication and five tandem duplication events that may have played key roles in the expansion of the rice CHS gene family. In addition, the OsCHS genes exhibited diverse expression patterns under salicylic acid treatment. Our results revealed that the OsCHS genes exhibit both diversity and conservation in many aspects, which will contribute to further studies of the function of the rice CHS gene family and provide a reference for investigating this family in other plants.  相似文献   

4.
5.
6.
Lignin is a major component of stone cells in pear fruit, which significantly affects fruit quality. Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT), a recently discovered enzyme in plants, is an important gene that participates in the formation of lignin. Although HCT gene cloning and expression patterns have been studied in several species, including pear, there is still no extensive genome-wide bioinformatics analysis on the whole gene family, and the evolutionary history of HCT gene family is still unknown. A total of 82 HCT genes were identified in pear, most of which have one or two exons, and all with the conserved HXXXD motif and transferase domains. Based on the structural characteristics and phylogenetic analysis of these sequences, the HCT gene family genes could be classified into four main groups. Structural analysis also revealed that 25 % of HCT genes share a MYB binding site. Expansion of the HCT gene family mostly occurred before the divergence between Arabidopsis and Rosaceae, with whole-genome duplication or segmental duplication events playing the most important role in the expansion of the HCT gene family in pear. At the same time, purifying selection also played a critical role in the evolution of HCT genes. Five of the 82 HCT genes were verified by qRT-PCR to correspond to the pattern of stone cell formation during pear fruit development. The genome-wide identification, chromosome localization, gene structures, synteny, and expression analyses of pear HCT genes provide an overall insight into HCT gene family and their potential involvement in growth and development of stone cells.  相似文献   

7.
8.
9.
10.
11.
The existence of the cluster of duplicated sit silicon transporter genes in the chromosome of the diatom Synedra acus subsp. radians was shown for the first time. Earlier, the localization of sit genes in the same chromosome and cluster formation caused by gene duplication was shown only for the marine raphid pennate diatom P. tricornutum. Only non-clustered sit genes were found in the genomes of other diatoms. It is reasonable to assume that sit tandem (sit-td) and sit triplet (sit-tri) genes of S. acus subsp. radians occurred as a result of gene duplication followed by divergence of gene copies.  相似文献   

12.
The plant phospholipase D(PLD)plays versatile functions in multiple aspects of plant growth,development,and stress responses.However,until now,our knowledge concerning the PLD gene family members and their expression patterns in cotton has been limited.In this study,we performed for the first time the genome-wide analysis and expression profiling of PLD gene family in Gossypium arboretum,and finally,a total of 19 non-redundant PLD genes(GaPLDs)were identified.Based on the phylogenetic analysis,they were divided into six well-supported clades(α,β/γ,δ,ε,ζ and φ).Most of the GaPLD genes within the same clade showed the similar exon-intron organization and highly conserved motif structures.Additionally,the chromosomal distribution pattern revealed that GaPLD genes were unevenly distributed across 10 of the 13 cotton chromosomes.Segmental duplication is the major contributor to the expansion of Ga PLD gene family and estimated to have occurred from19.61 to 20.44 million years ago when a recent large-scale genome duplication occurred in cotton.Moreover,the expression profiling provides the functional divergence of GaPLD genes in cotton and provides some new light on the molecular mechanisms of GaPLDα1 and GaPLDδ2 in fiber development.  相似文献   

13.
14.
Potassium is the most abundant inorganic cation that constitutes up to 10% of the total plant dry weight and plays a prominent role in plant growth and development. Plants exhibit a complex but highly organized system of channels and transporters, which are involved in absorption and distribution of K+ from soil to different parts of plants. In this study, we explored the K+ transport system in chickpea genome and identified 36 genes encoding potassium channels and transporters. The identified genes were further classified on the basis of their domain structure and conserved motifs. It includes K+ transporters (23 genes: 2 HKTs, 6 KEAs, and 15 KUP/HAK/KTs) and K+ channels (13 genes: 8 Shakers and 5 TPKs). Chromosomal localization of these genes demonstrated that various K+ transporters and channels are randomly distributed across all the eight chromosomes. Comparative phylogenetic analysis of K+ transport system genes from Arabidopsis thaliana, Glycine max, Medicago truncatula, and Oryza sativa revealed their strong conservation in different plant species. Similarly, gene structure analysis displayed conservation of family-specific intron/exon organization in the K+ transport system genes. Evolutionary analysis of these genes suggested the segmental duplication as principal route of expansion for this family in chickpea. Several abiotic stress-related cis-regulatory elements were also identified in promoter regions suggesting their role in abiotic stress tolerance. Expression analysis of selected genes under drought, heat, osmotic, and salt stress demonstrated their differential expression in response to these stresses. This signifies the importance of these genes in the modulation of stress response in chickpea. Present study provides the first insight into K+ transport system in chickpea and can serve as a basis for their functional analysis.  相似文献   

15.
As the largest class of resistant genes, the nucleotide binding site (NBS) has been studied extensively at a genome-wide level in rice, sorghum, maize, barley and hexaploid wheat. However, no such comprehensive analysis has been conducted of the NBS gene family in Triticum urartu, the donor of the A genome to the common wheat. Using a bioinformatics method, 463 NBS genes were isolated from the whole genome of T. urartu, of which 461 had location information. The expansion pattern and evolution of the 461 NBS candidate proteins were analyzed, and 118 of them were duplicated. By calculating the lengths of the copies, it was inferred that the NBS resistance gene family of T. urartu has experienced at least two duplication events. Expression analysis based on RNA-seq data found that 6 genes were differentially expressed among Tu38, Tu138 and Tu158 in response to Blumeria graminis f.sp.tritici (Bgt). Following Bgt infection, the expression levels of these genes were up-regulated. These results provide critical references for further identification and analysis of NBS family genes with important functions.  相似文献   

16.
S-acylation is one of a group of lipid modifications that occurs on eukaryotic proteins, mediated by DHHC-CRD-containing proteins, which plays an important role in regulating the membrane association, trafficking and function of target proteins. Although genome-wide identification of PAT family has been carried out in yeast, mice, humans and Arabidopsis, little is known about apple PAT genes. In this study, a total of 33 putative apple PAT proteins, containing DHHC-CRD by domain analysis, have been identified, and were classified into three groups according to the phylogenetic analysis of PAT proteins in apple and Arabidopsis. More complex TMDs in the most MdPATs revealed the PM location of the gene family. Gene structure, gene chromosomal location and paralogs analysis of MdPAT genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the PAT gene family in apple. According to the microarray and expressed sequence tag (ESTs) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interactions process. Moreover, PATs were performed expression profile analyses in different tissues, indicating that the PATs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple PAT gene family, and this genomic analysis of apple DHHC-CRD PAT genes provides the first step towards a functional study of this gene family in apple.  相似文献   

17.
Plant auxin response factors (ARFs) are involved in plant growth, development and multiple other processes. In this study, the ARF gene family in the peach genome was identified by bioinformatics software and RT-PCR. In total, 18 PpARF candidate genes were found in the peach genome. The DNA-binding and ARF domains, as well as motif III and IV of the PpARF gene family were highly conserved. The phylogenetic analysis revealed that PpARF gene family was divided into five classes: Class I (three members), Class II (four members), Class III (five members), Class IV (three members) and Class V (three members). The results of an intron-exon structure analysis indicated that PpARF gene family members were composed of 2–15 exons. A chromosome mapping analysis revealed that PpARF genes were distributed with different densities over eight chromosomes, with the largest number of PpARF genes on chromosome 1 (four genes), followed by chromosome 4 and 6 (three genes each). Only one gene was located on each of chromosome 3, 7 and 8. A conserved motif analysis revealed that the DNA-binding and ARF domains were observed in all PpARF proteins (except for PpARF18). Class I contained no motifs III or IV (except for PpARF7). RT-PCR results indicated that all of the PpARF genes, with the exception of PpARF15 and PpARF17, were expressed in at least one of the tissues (roots, stems, leaves, flowers and five stages of fruit development). These results suggested that the PpARF gene family members are highly and structurally conserved, and are involved in various aspects of peach growth and development, especially in fruit development.  相似文献   

18.

Key message

The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant’s MADS-box gene family.

Abstract

Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC C gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC C gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.
  相似文献   

19.
Distal hereditary motor neuropathies predominantly affect the motor neurons of the peripheral nervous system leading to chronic disability. Using whole genome sequencing (WGS) we have identified a novel structural variation (SV) within the distal hereditary motor neuropathy locus on chromosome 7q34–q36.2 (DHMN1). The SV involves the insertion of a 1.35 Mb DNA fragment into the DHMN1 disease locus. The source of the inserted sequence is 2.3 Mb distal to the disease locus at chromosome 7q36.3. The insertion involves the duplication of five genes (LOC389602, RNF32, LMBR1, NOM1, MNX1) and partial duplication of UBE3C. The genomic structure of genes within the DHMN1 locus are not disrupted by the insertion and no disease causing point mutations within the locus were identified. This suggests the novel SV is the most likely DNA mutation disrupting the DHMN1 locus. Due to the size and position of the DNA insertion, the gene(s) directly affected by the genomic re-arrangement remains elusive. Our finding represents a new genetic cause for hereditary motor neuropathies and highlights the growing importance of interrogating the non-coding genome for SV mutations in families which have been excluded for genome wide coding mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号