首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In quiescent rat 3Y1 fibroblasts infected with simian virus 40 (SV40), sodium butyrate elongated the time lag before entry into S phase in a concentration-dependent fashion. In spite of the elongated time lags, SV40-infected cells entered S phase in a very synchronous mode, irrespective of the butyrate concentrations. The elongated time lag seemed to be at least partially due to a delayed synthesis and a delayed accumulation of large T antigen caused by butyrate. The entry into S phase was also delayed even when butyrate was added to the cultures after expression of T antigen to an extent sufficient for untreated cells to enter S phase. This suggests that butyrate may also inhibit a cellular event(s) that is required for entry into S phase after expression of the T antigen. In contrast, serum-stimulated cells were more sensitive to butyrate with respect to entry into S phase than SV40-infected cells, and the distribution of the time lag among cell populations increased (i.e., asynchrony in entry into S phase increased) with an increase in the butyrate concentration.  相似文献   

2.
3.
The expression of genes coding for the four core histones (H2A, H2B, H3, and H4) was studied in tsAF8 cells. These baby hamster kidney-derived cells are a temperature-sensitive (ts) mutant of the cell cycle that arrest in G1 at the restrictive temperature. When serum-deprived tsAF8 cells are stimulated with serum, they enter the S phase at the permissive temperature of 34 degrees C, but are blocked in G1 at the nonpermissive temperature of 39.6 degrees C. Northern blot analysis using cloned human histone DNA probes detected only very low levels of histone RNA either in quiescent tsAF8 cells or in cells serum stimulated at the nonpermissive temperature for 24 h. Cellular levels of histone RNA were markedly increased in cells serum stimulated at 34 degrees C for 24 h. Temperature shift-up experiments after serum stimulation of quiescent populations showed that the amount of histone RNA was related to the number of cells that entered the S phase. Those cells that synthesized histone RNA and entered the S phase were capable of dividing. This is the first demonstration in a mammalian G1-specific ts mutant that the expression of H2A, H2B, H3, and H4 histone genes depends on the entry of cells into the S phase of the cell cycle.  相似文献   

4.
Numerous reports have shown that polyamines are required for cell proliferation. A current model for regulating commitment to DNA replication in cultured fibroblasts stimulated from quiescence by serum addition postulates sequential action by specific growth factors. To temporally localize polyamine-dependent steps within this defined sequence, mouse Balb/c-3T3 fibroblasts were partially depleted of polyamines by treatment with DL-alpha-difluoromethylornithine (DFMO), next rendered quiescent by serum deprivation, then stimulated by 10% serum with or without exogenous putrescine (Pu). Depletion of polyamines was verified by HPLC, and entry of cells into S phase was monitored by autoradiography. After 24 h of incubation with [3H]-thymidine, polyamine-depleted cells had labeling indices similar to quiescent cells if they were serum-stimulated without Pu, but progressed to S phase to the same degree as control cultures if polyamines were restored by adding Pu at the time of serum stimulation. These observations suggested that commitment of quiescent cells to DNA replication may require polyamines. To determine if polyamine-dependent steps occur during the pre-commitment period (up to 12 h after serum stimulation) or only in traverse of G1 (12 h to 24 h, post-commitment), polyamine-depleted quiescent cells were serum-stimulated for 12 h without Pu, then returned to low serum with Pu. Labeling indices of these cultures remained nearly as low as those of unstimulated cells. Reducing serum concentration from 10% to 0.5% at 12 h after stimulation did not effect labeling indices of control cells not depleted of polyamines by DFMO. These results supported the postulated requirement for polyamines during pre-commitment events. However, polyamine-deficient quiescent cells serum-stimulated without Pu for periods longer than 24 h had labeling indices at 36 and 48 h significantly greater than at 24 h. This suggested that polyamine depletion may decrease the rate at which quiescent cells commit to DNA replication, rather than producing an absolute blockade during the pre-commitment period.  相似文献   

5.
6.
Sodium butyrate (3 mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G1 and S-phase 3T3 cells, Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in B1 nuclei when G1 cells are fused with S-phase cells. However, when G1 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G1 phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. Our interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G0 leads to G1 leads to S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.  相似文献   

7.
When growth-arrested GC-7 cells, a cell line from African green monkey kidney, are stimulated with 10% calf serum, they enter S phase 14-15 h later. Cytochalasin D at 0.6 micrograms/ml blocks the entrance into S phase, and inhibits, though only partially, the increase in protein synthesis after serum stimulation. Since partial inhibition of protein synthesis by cycloheximide interferes with accumulation of labile proteins and thus blocks the entrance of serum-stimulated cells into S phase, the effects of these two inhibitors are compared. Cytochalasin D at lower concentrations reduced the rate of entry into S phase without affecting the length of the prereplicative phase, whereas cycloheximide extended the prereplicative phase dose dependently without affecting the rate of entry into S phase. Cytochalasin D affected neither individual [35S]methionine-labeled spots on two-dimensional polyacrylamide-gel nor degradation of cellular proteins. These results indicate that cytochalasin D, though it interferes with protein synthesis, blocks prereplicative progression of serum-stimulated GC-7 cells in a different manner than cycloheximide.  相似文献   

8.
9.
A temperature-sensitive cell-cycle mutant, tsJT16, which has been isolated from Fischer rat fibroblasts, was defective in the function(s) that operated soon after growth stimulation. When G0-arrested tsJT16 was stimulated to proliferate, it entered the S phase after 12-15 h at 34 degrees C but failed to do so at 40 degrees C. The function mutated in tsJT16 was required to be normal for the first 4 h or less for cells to transit from the G0 to S phase. The induction of cell-cycle-dependent genes such as c-fos, c-myc and ornithine decarboxylase was observed at both temperatures after growth stimulation. Although an increase in total protein synthesis occurred at both temperatures after growth stimulation, synthesis of one protein (p70) (pI 7.8 and Mr 70,000) was inhibited at 40 degrees C. Synthesis of p70 was negligible in G0-arrested cells and blocked by actinomycin D in serum-stimulated cells at 34 degrees C. These results suggest that tsJT16 has a ts defect in one of the signal transduction processes to induce gene activation. tsJT16 was also defective in progression of the G1 phase of growing cells, consistent with the previous results in which growth stimuli were required at G1 for continuation of proliferation.  相似文献   

10.
We have studied the effect of methylglyoxal-bis (guanylhydrazone) (MGBG) and novobiocin on the accumulation of specific mRNAs in serum-stimulated ts13 cells (a temperature-sensitive mutant of the BHK cell line). The RNAs studied included: c-myc, v-ras, ornithine decarboxylase, beta-actin, histone H3, and those represented by clones p2F1 and p1B6 (Hirschhorn et al., Proc. Natl, Acad. Sci. USA, 81:6004, 1984) All these RNAs accumulated at higher levels when quiescent cells were serum stimulated for 16 h. Both MGBG (25 micronM and 100 micronM) and novobiocin (200 micrograms/ml) effectively prevented the transition from G0 to S phase. We found that 100 microM MGBG induced an overaccumulation of c-myc RNA while H3 RNA was decreased, and the steady-state levels of all other RNAs were the same as in cells stimulated without the drug. Novobiocin prevented the serum-induced increase in the amount of all RNAs, which remained at the same levels as in quiescent cells, with the exception of c-myc, which again accumulated at a higher level in drug-treated cells than in serum-stimulated untreated cells. The possible significance of these results is discussed.  相似文献   

11.
We have previously shown that dimethyl sulfoxide (DMSO) treatment of mouse embryo fibroblasts (MEF) at the early hours of mitogenic stimuli resulted in the inhibition of DNA and protein synthesis; delayed treatment of serum-stimulated cells with DMSO had little effect on the synthesis of these macromolecules. Here, we demonstrate the specific inhibition of expression of early growth response genes by DMSO in serum-stimulated MEF. The expression of interleukin 6, and of oncogenes c-myc and c-fos were inhibited when the cells were treated with 2% DMSO from the beginning of serum-stimulated growth but not after 3 h of mitogenic stimuli. Although the actin gene is an early serum-response gene, its expression was not affected by DMSO. The synthesis of another serum-induced protein, the plasminogen activator inhibitor-1 was blocked during concurrent and delayed (after 3 h of stimulation) treatment of serum-stimulated fibroblasts with DMSO. The expression of glyceraldehyde-3-phosphate dehydrogenase gene was not affected by DMSO. These results indicate that the expression of non-growth-related genes are either not affected or affected nonspecifically both at early and late stages of serum-induced growth of mouse embryo fibroblasts. The serum-induced expression of c-fos gene was abolished by DMSO treatment of MEF while the phorbol 12-myristate 13-acetate-induced expression of fos gene was not, indicating that the PMA signaling pathway was refractory to DMSO. Treatment of cells with medium containing 2% DMSO for 24-48 h prevents them from progression into cell cycle by preventing the expression of genes involved in G0-G1 transition of quiescent cells.  相似文献   

12.
To identify previously undetected genes that might be involved in later stages of the transition from a quiescent state (G0) to the DNA synthetic phase (S) of murine cells, we set out to isolate cDNA clones derived from mRNAs that appear late in G1 phase in serum-stimulated cells. A lambda-cDNA library was prepared using poly(A)+ RNA from chemically transformed Balb/c 3T3 cells (BP/A31) that had been brought to quiescence and subsequently stimulated for 12 h with serum. From the first screening of approximately 21,000 recombinant phage plaques, about 100 clones were isolated that hybridized to a single-stranded cDNA pool derived from stimulated-cell RNA but not to DNAs made from resting-cell RNA. Eventually, six different clones were identified. The mRNAs from five of these genes increased gradually during the G0 to S transition, in contrast to the "immediate-early" rise of c-myc mRNA or the later rise of thymidine kinase mRNA. These six clones were sequenced and compared to the GenBank database. Clones LG-80, LG-2, and LG-69 are highly homologous to beta-actin, lactate dehydrogenase, and alpha-tubulin. Clones LG-5, LG-61, and LG-74 had no significant homologies to known sequences. A subtractive cDNA library was used to isolate two additional clones, Sub-S1 and Sub-S2; these have homologies to enolase and ribosomal protein L32. Additional studies that examine the function and regulation of these newly identified "late response" genes in the pre-DNA synthesis pathway are in progress.  相似文献   

13.
An antigen expressed in proliferating cells at late G1-S phase   总被引:1,自引:0,他引:1  
A monoclonal antibody Pr-28 was prepared, which recognized an antigen present only in proliferating cells. Immunofluorescence analysis of Pr-28 antigen showed that the antigen was localized mainly in perinuclear cytoplasm. Although Pr-28 antibody was produced against a chicken cell antigen, it reacts not only with chicken cells but also other cells of murine origin, such as L-cells and NIH 3T3 cells. The molecular weight (Mr) of the antigen recognized by Pr-28 antibody was 45,000 D as determined by SDS-PAGE run under reducing conditions. The antigen disappeared in NIH 3T3 quiescent cells, reappearing in quiescent cells stimulated by fetal calf serum (FCS). The synthesis of Mr 45,000 protein occurred at late G1 phase, just before DNA synthesis in serum-stimulated quiescent NIH 3T3 cells and ceased in S phase.  相似文献   

14.
15.
Soluble extracts from serum- or epidermal growth factor-stimulated Swiss 3T3 cells show up to a 25-fold increase in their ability to phosphorylate 40 S ribosomal protein S6. The increased S6 phosphorylation is due to increased protein kinase activity in extracts of stimulated cells and not due to the inactivation of an S6 phosphatase. However, the presence of phosphatase inhibitors as well as EGTA is required during the preparation of cell extracts to obtain fully active S6 kinase(s). Epidermal growth factor has little effect at concentrations below 10(-10) M: activity increases sharply at 10(-9) M epidermal growth factor and reaches saturation at 10(-8) M (50-60% of the activity obtained by stimulating with 10% serum). Activation of the kinase activity in cell extracts is observed as early as 2 min after serum stimulation, reaches 50% between 10 and 15 min, and is maximal by 60 min of serum stimulation. Phosphorylation in vitro of ribosomal protein S6 with extracts from serum-stimulated cells followed by analysis of the tryptic phosphopeptides shows the presence of 9 of the 11 phosphopeptides induced by serum in vivo.  相似文献   

16.
To study further the factors providing for cellular quiescence, we used okadaic acid (OA) at concentrations (0.1, 1, 10 or 100 nM) inhibiting type 1 and/or type 2A protein phosphatases in mammalian cell cultures. Brief (2 h) exposure of resting (0.2% serum for 72 h) NIH 3T3 mouse fibroblasts to OA with subsequent incubation of cells in a medium with 0.2% serum, stimulated DNA synthesis at all concentrations studied. Maximal stimulation was observed following pre-incubation of resting cells with 10 nM OA. Treatment of cycling cells (10% serum) with OA (2 h pulses at 12 h intervals for 72 h) prevented their exit to the resting state on transfer to a medium with 0.2% serum. Brief exposures of resting cells to OA did not affect the rate of protein synthesis. OA pulses in the late pre-replicative period had no effect on the entry of serum-stimulated cells into the S phase. Cell fusion experiments with resting (serum-deprived) and proliferating (serum-stimulated) NIH 3T3 cells, using radioautography with a double-labelling technique, revealed that pre-incubation of resting cells with OA for 2 h before and after fusion abrogates their ability to suppress the onset of DNA synthesis in the nuclei of proliferating cells in heterodikaryons. The results indicate that protein phosphatases of type 1 and/or 2A may be involved in the growth-arrest machinery that provides for cellular quiescence.  相似文献   

17.
18.
tsJT60, a temperature-sensitive (ts) G0-mutant cell line from a Fischer rat, grows normally in the exponential growth phase at 34 degrees C and 39.5 degrees C, but when stimulated with fetal bovine serum (FBS), from the G0 phase they reenter the S phase at 34 degrees C but not at 39.5 degrees C. The ts-block was bypassed when G0-arrested tsJT60 cells were stimulated at 39.5 degrees C with FBS plus epidermal growth factor (EGF). The presence of EGF for the first 6 h after serum stimulation caused tsJT60 cells to enter the S phase in the presence of FBS at 39.5 degrees C. When EGF was added 6 h after serum stimulation, entrance into the S phase was delayed by about 6 h. The sequential presence of two growth factors, EGF without FBS for 6 h then FBS without EGF, or the reversed sequence, failed to initiate DNA synthesis at 39.5 degrees C. The binding of EGF was not temperature sensitive. The amounts of RNA and protein present doubled after stimulation with both FBS and EGF at 39.5 degrees C. These and other findings suggest that EGF bypasses only some specific event in the entire prereplicative process that operates operating in serum-stimulated cells at 39.5 degrees C.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号