首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
SUMMARY 1. Silver carp, Hypophthalmichthys molitrix (Val.), feeds on both phyto- and zooplankton and has been used in lake biomanipulation studies to suppress algal biomass. Because reports on the effects of silver carp on lake food webs have been contradictory, we conducted an enclosure experiment to test how a moderate biomass of the fish (10 g wet weight m−3) affects phytoplankton and crustacean zooplankton in a mesotrophic temperate reservoir.
2. Phytoplankton biomass <30 μm and particulate organic carbon (POC) <30 μm were significantly higher in enclosures with silver carp than in enclosures without fish, whereas Secchi depth was lower. Total copepod biomass declined strongly in both treatments during the experiment, but it was significantly higher in fish-free enclosures. Daphnid biomass was also consistently higher in enclosures without fish, although this effect was not significant. However, the presence of fish led to a fast and significant decrease in the size at maturity of Daphnia galeata Sars. Thus, the moderate biomass of silver carp had a stronger negative effect on cladoceran zooplankton than on phytoplankton.
3. Based on these results and those of previous studies, we conclude that silver carp should be used for biomanipulation only if the primary aim is to reduce nuisance blooms of large phytoplankton species (e.g. cyanobacteria) that cannot be effectively controlled by large herbivorous zooplankton. Therefore, stocking of silver carp appears to be most appropriate in tropical lakes that are highly productive and naturally lack large cladoceran zooplankton.  相似文献   

2.
Summary We began this experiment to test specific hypotheses regarding direct and indirect effects of fish predation on the littoral macroinvertebrate community of Bays Mountain Lake, Tennessee. We used 24 m2 enclosures in which we manipulated the presence and absence of large redear sunfish (Lepomis microlophus>150 mm SL), and small sunfish (L. macrochirus and L. microlophus <50 mm SL) over a 16-mo period. Here we report on effects of fish predation on gastropod grazers that appear to cascade to periphyton and macrophytes.Both large redear sunfish and small sunfish maintained low snail biomass, but snails in fish-free controls increased significantly during the first 2-mo of the experiment. By late summer of the first year of the experiment, the difference in biomass between enclosures with and without fish had increased dramatically (>10×). Midway through the second summer of the experiment, we noted apparent differences in the abundance of periphyton between enclosures containing fish and those that did not. We also noted differences in the macrophyte distribution among enclosures. To document these responses, we estimated periphyton cover, biovolume and cell size frequencies as well as macrophyte distributions among enclosures at the end of the experiment. When fish were absent, periphyton percent cover was significantly reduced compared to when fish were present. Periphyton cell-size distributions in enclosures without fish were skewed toward small cells (only 12% were greater than 200 m3), which is consistent with intense snail grazing. The macrophyte Najas flexilis had more than 60 x higher biomass in the fish-free enclosures than in enclosures containing fish; Potamogeton diversifolius was found only in fish-free enclosures. These results suggest a chain of strong interactions (i.e. from fish to snails to periphyton to macrophytes) that may be important in lake littoral systems. This contrasts sharply with earlier predictions based on cascading trophic interactions that propose that fish predation on snails would enhance macrophyte biomass.  相似文献   

3.
1. High biomass of macrophytes is considered important in the maintenance of a clear‐water state in shallow eutrophic lakes. Therefore, rehabilitation and protection of aquatic vegetation is crucial to the management of shallow lakes. 2. We conducted field mesocosm experiments in 1998 and 1999 to study community responses in the plant‐dominated littoral zone of a lake to nutrient enrichment at different fish densities. We aimed to find the threshold fish biomass for the different nutrient enrichment levels below which large herbivorous zooplankton escapes control by fish. The experiments took place in the littoral of Lake Vesijärvi in southern Finland and were part of a series of parallel studies carried out jointly at six sites across Europe. 3. In 1998, when macrophyte growth was poor, a clear‐water state with low phytoplankton biomass occurred only in unenriched mesocosms without fish or with low fish biomass (4 g fresh mass m?2). Both nutrient enrichment and high fish biomass (20 g fresh mass m?2) provoked a turbid water state with high planktonic and periphytic algal biomass. The zooplankton community was dominated by rotifers and failed to control the biomass of algae in nutrient enriched mesocosms. The littoral community thus had low buffer capacity against nutrient enrichment. 4. In 1999, macrophytes, especially free‐floating Lemna trisulca L., grew well and the zooplankton community was dominated by filter‐feeding cladocerans. The buffer capacity of the littoral community against nutrient enrichment was high; a clear‐water state with low phytoplankton biomass prevailed even under the highest nutrient enrichment. High grazing rates by cladocerans, together with reduced light penetration into the water caused by L. trisulca, were apparently the main mechanisms behind the low algal biomass. 5. Effects of fish manipulations were less pronounced than effects of nutrient enrichment. In 1999, clearance rates of cladocerans were similar in fish‐free and low‐fish treatments but decreased in the high‐fish treatment. This suggests that the threshold fish biomass was between the low‐ and high‐fish treatments. In 1998, such a threshold was found only between fish‐free and low‐fish treatments. 6. The pronounced difference in the observed responses to nutrient enrichment and fish additions in two successive years suggests that under similar nutrient conditions and fish feeding pressure either clear or turbid water may result depending on the initial community structure and on weather.  相似文献   

4.
1. An in situ enclosure experiment was conducted in a deep reservoir of southern China to examine (i) the effects of a low biomass (4 g wet weight m?3) of silver carp (Hypophthalmichthys molitrix) and nutrients on the plankton community and (ii) the response of Daphnia to eutrophication. 2. In the absence of fish, Daphnia galeata dominated the zooplankton community, whereas calanoids were dominant in the fish treatments, followed by D. galeata. Silver carp stocking significantly reduced total zooplankton biomass, and that of D. galeata and Leptodorarichardi, but markedly increased the biomass of smaller cladocerans, copepod nauplii and rotifers. In contrast, nutrient enrichment had no significant effect on the plankton community except for cyclopoids. 3. Chlorophyta, Cryptophyta and Bacillariophyta were dominant phytoplankton groups during the experiment. Chlorophyta with high growth rates (mainly Chlorella vulgaris in the fish enclosures and Ankyra sp. in the fishless enclosures) eventually dominated the phytoplankton community. Total phytoplankton biomass and the biomass of edible phytoplankton [greatest axial linear dimension (GALD) < 30 μm], Chlorophyta, Cryptophyta, Bacillariophyta and Cyanobacteria showed positive responses to fish stocking, while inedible phytoplankton (GALD ≥ 30 μm) was significantly reduced in the fish enclosures. However, there was no significant effect on the plankton community from the interaction of fish and nutrients. 4. Overall, the impact of fish on the plankton community was much greater than that of nutrients. High total phosphorus concentrations in the control treatment and relatively low temperatures may reduce the importance of nutrient enrichment. These results suggest it is not appropriate to use a low biomass of silver carp to control phytoplankton biomass in warmer, eutrophic fresh waters containing large herbivorous cladocerans.  相似文献   

5.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

6.
Complementary impact of copepods and cladocerans on phytoplankton   总被引:9,自引:0,他引:9  
The differences in the impact of two major groups of herbivorous zooplankton (Cladocera and Copepoda) on summer phytoplankton in a mesotrophic lake were studied. Field experiments were performed in which phytoplankton were exposed to different densities of two major types of herbivorous zooplankton, cladocerans and copepods. Contrary to expectation, neither of the two zooplankton groups significantly reduced phytoplankton biomass. However, there were strong and contrasting impacts on phytoplankton size structure and on individual taxa. Cladocerans suppressed small phytoplankton, while copepods suppressed large phytoplankton. The unaffected size classes compensated for the loss of those affected by enhanced growth. After contamination of the copepod mesocosms with the cladoceran Daphnia , the combined impact of both zooplankton groups caused a decline in total phytoplankton biomass.  相似文献   

7.
In a pond receiving warmed cooling waters from a thermal power plant, the physical and chemical properties of the water, phytoplankton, periphyton and zooplankton were monitored on a weekly sampling schedule. In winter the phytoplankton growth was limited by poor light conditions. In mid-February a rapid phytoplankton growth started, simultaneously with increasing light energy, high nutrient concentrations and small herbivorous zooplankton populations. The increase of phytoplankton biomass was stopped by lack of free nutrients and silica at the end of March. From May until August the phytoplankton standing crop was mainly regulated by herbivorous zooplankton. The autumnal maximum of phytoplankton occurred with decreasing zooplankton populations, increasing nutrient concentrations, a turbulence favourable for diatoms and high water temperature.  相似文献   

8.
Hann  B.J.  Mundy  C.J.  Goldsborough  L.G. 《Hydrobiologia》2001,457(1-3):167-175
This study examined the effects of nutrients and macrophytes on snail grazers and periphyton in a prairie wetland food web. Snails (Gyraulus circumstriatus) and periphyton in large enclosures in a lacustrine wetland, Delta Marsh, MB, Canada were subjected to two experimental treatments, nutrient addition (nitrogen, phosphorus) and macrophyte exclusion (using a porous geotextile carpet) during July and August. Snail biomass and periphyton biomass (on both artificial substrata and submerged macrophytes) increased over time in all treatments, representing seasonal growth. Snail biomass was three times higher on macrophytes than on artificial substrata. In response to nutrient addition, snail biomass was significantly elevated over time on macrophytes but not on artificial substrata. Conversely, periphyton biomass was higher on artificial substrata but not on macrophytes in response to nutrient addition. Snail biomass and periphyton biomass on artificial substrata showed no response to macrophyte exclusion. Snail biomass on all substrata was inversely correlated with turbidity, whereas periphyton biomass showed no relationship with turbidity. Timing of nutrient additions to wetlands may influence whether the response occurs primarily in phytoplankton or in periphyton and macrophytes.  相似文献   

9.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

10.
The influence of zooplanktivorous fishes on the plankton community and water quality of Americana Reservoir, Brazil was studied experimentally in 4 floating enclosures during the dry seasons (July–September) of 1982 and 1983. Two enclosures were stocked with adult fish (Astyanax bimaculatus in 1982;A. fasciatus in 1983) at near maximal densities measured in the reservoir upper surface waters (35 m–2) and two were fish-free during each experiment lasting about one month. Marked differences were evident between the fish and fish-free enclosures after a 2–3 week period in each experiment, particularly with respect to water transparency, phytoplankton biomass, and zooplankton abundance as well as species and size composition. By the end of each experiment water transparencies were lower and phytoplankton biomass higher in the fish enclosures compared to those without fish. Also at that time Rotifera were the prominent zooplankters in the fish enclosures and Cladocera in the fish-free ones. Larger or more conspicuous species of Cladocera asDaphnia gessneri, D. ambigua, andMoina micrura were present in the fish-free enclosures but not in the fish enclosures. The interactions between fish predation, zooplankton grazing, phytoplankton biomass and water quality conditions are discussed in relation to eutrophication of a tropical aquatic ecosystem.  相似文献   

11.
Water-column mixing is known to have a decisive impact on plankton communities. The underlying mechanisms depend on the size and depth of the water body, nutrient status and the plankton community structure, and they are well understood for shallow polymictic and deep stratified lakes. Two consecutive mixing events of similar intensity under different levels of herbivory were performed in enclosures in a shallow, but periodically stratified, eutrophic lake, in order to investigate the effects of water-column mixing on bacteria abundance, phytoplankton abundance and diversity, and rotifer abundance and fecundity. When herbivory by filter-feeding zooplankton was low, water-column mixing that provoked a substantial nutrient input into the euphotic zone led to a strong net increase of bacteria and phytoplankton biomass. Phytoplankton diversity was lower in the mixed enclosures than in the undisturbed ones because of the greater contribution of a few fast-growing species. After the second mixing event, at a high biomass of filter-feeding crustaceans, the increase of phytoplankton biomass was lower than after the first mixing, and diversity remained unchanged because enhanced growth of small fast-growing phytoplankton was prevented by zooplankton grazing. Bacterial abundance did not increase after the second mixing, when cladoceran biomass was high. Changes in rotifer fecundity indicated a transmission of the phytoplankton response to the next trophic level. Our results suggest that water-column mixing in shallow eutrophic lakes with periodic stratification has a strong effect on the plankton community via enhanced nutrient availability rather than resuspension or reduced light availability. This fuels the basis of the classic and microbial food chain via enhanced phytoplankton and bacterial growth, but the effects on biomass may be damped by high levels of herbivory. Received: 3 May 1999 / Accepted: 13 April 2000  相似文献   

12.
1.Refuges that reduce fish-induced mortality of zooplankton are considered to be key factors in controlling phytoplankton growth in lake ecosystems. In order to better understand the role of physical refuges for zooplankton on zooplanktivorous fish-plankton relationships, an enclosure experiment was run in a mesotrophic lake. Even-link systems (zooplankton and phytoplankton) and odd-link systems (zooplanktivorous fish, zooplankton and phytoplankton) were established. We also established an odd-link system with a physical refuge for zooplankton where fish predation was limited in the upper half of the enclosure.
2.Fish negatively affected density and mean body length of herbivorous zooplankton and total zooplankton, filtering rates with some intermediate effects in the presence of the refuge. A clear refuge effect was observed for the dominant herbivore, Ceriodaphnia . On the other hand, the refuge seemed to increase the vulnerability of those taxa that aggregated in upper layers of the water column. Grazing was thus reduced in both odd-link systems.
3.The lack of significant correlation between nutrient availability and phytoplankton biomass in enclosures suggested a top-down control of algal growth in our experimental systems. In both odd-link systems ('fish' and 'refuge') phytoplankton biomass was significantly enhanced, and transparency was reduced in comparison with the even-link system.  相似文献   

13.
In a clear and a turbid freshwater lake the biomasses of phytoplankton, periphytic algae and periphytonassociated macrograzers were followed in enclosures with and without fish (Rutilus rutilus) and four light levels (100%, 55%, 7% and < 1% of incoming light), respectively. Fish and light affected the biomass of primary producers and the benthic grazers in both lakes. The biomass of primary producers was generally higher in the turbid than the clear lake, and in both lakes fish positively affected the biomass, while shading reduced it. Total biomass of benthic grazing invertebrates was higher in the clear than in the turbid lake and the lakes were dominated by snails and chironomids + ostracods, respectively. While light had no effect on the biomass of grazers in the clear lake, snail breeding was delayed in the most shaded enclosures and presence of fish reduced the number of snails and the total biomass of grazers. In the turbid lake ostracod abundance was not influenced by light, but was higher in fish-free enclosures. Density of chironomids correlated positively with periphyton biomass in summer, while fish had no effect. Generally, light-mediated regulation of primary producers was stronger in the turbid than in the clear lake, but the regulation did not nambiguously influence the primary consumers. However, regulation by fish of the benthic grazer community was stronger in the clear than in the turbid lake, and in both lakes strong top-down effects on periphyton were seen. The results indicate that if present-day climate in Denmark in the future is found in coastal areas at higher latitudes, the effect of lower light during winter in such areas will be highest in clear lakes, with typically lower fish biomass and higher invertebrate grazer density.  相似文献   

14.
SUMMARY. 1. Two experiments with plankton communities from Storrs Pond (NH), one conducted in the laboratory and one in field enclosures, assessed the impact of different cladocerans on rotifers and ciliated protozoa.
2. The smallest cladoceran, Bosmina longirostris , did not depress rotifer or ciliate growth rates while the intermediate sized dadoceran, Daphnia galeata mendotae , reduced ciliate growth rates in the enclosure experiment but had only a marginal effect in the jar experiment. D. galeata mendotae had no effect on any of the rotifers in either experiment.
3. In both experiments the largest cladoceran, Daphniapulex , depressed the growth rates of ciliates and those rotifers known to be vulnerable to interference competition. Polyarthra vulgaris , previously shown to be resistant to cladoceran interference, was the only rotifer unaffected by D. pulex in the field experiment but was depressed by the much higher densities of this cladoceran in the laboratory experiment.
4. Cladocerans did not affect phytoplankton or bacterioplankton abundance in either experiment. Therefore the mechanism most likely to be responsible for the suppressive effect of cladocerans on rotifers and ciliates in these experiments is direct mechanical interference or predation, rather than exploitative competition.  相似文献   

15.
The stoichiometry of trophic interactions has mainly been studied in simple consumer–prey systems, whereas natural systems often harbour complex food webs with abundant indirect effects. We manipulated the complexity of trophic interactions by using simple laboratory food webs and complex field food webs in enclosures in Lake Erken. In the simple food web, one producer assemblage (periphyton) and its consumers (benthic snails) were amended by perch, which was externally fed by fish food. In the complex food web, two producer assemblages (periphyton and phytoplankton), their consumers (benthic invertebrates and zooplankton) and perch feeding on zooplankton were included. In the simple food web perch affected the stoichiometry of periphyton and increased periphyton biomass and the concentration of dissolved inorganic nitrogen. Grazers reduced periphyton biomass but increased its nutrient content. In the complex food web, in contrast to the simple food web, perch affected periphyton biomass negatively but increased phytoplankton abundance. Perch had no influence on benthic invertebrate density, zooplankton biomass or periphyton stoichiometry. Benthic grazers reduced periphyton biomass and nutrient content. The difference between the simple and the complex food web was presumably due to the increase of pelagic cyanobacteria ( Gloeotrichia sp.) with fish presence in the complex food web, thus fish had indirect negative effects on periphyton biomass through nutrient competition and shading by cyanobacteria. We conclude that the higher food web complexity through the presence of pelagic primary producers (in this case Gloeotrichia sp.) influences the direction and strength of trophic and stoichiometric interactions.  相似文献   

16.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

17.
The impacts of fish and nutrient enrichment on the biomass of small and large cladoceran species were studied in mesocosms under eutrophic conditions. Fish shifted the ratio between small and large species to favour small cladocerans compared to control mesocosms, while nutrient enrichment favoured large cladocerans. Both fish vital activity and nutrient enrichment increased total and blue-green algae concentrations. While chlorophyll concentrations increased in response to fish and nutrient enrichment, there were no significant effects of fish on total cladoceran biomass and the relative proportion of large species due to high variability among replicates within treatments. However, fish and nutrient enrichment affected average total cladoceran biomass and the biomass of large species compared to control conditions.  相似文献   

18.
We examined the impact of five silver carp biomass levels (0, 8, 16, 20, and 32 g m−3) on plankton communities and water quality of Villerest eutrophic reservoir (France). We realized the experiments using outdoor mesocosms. The presence of silver carp led to changes in zooplankton and phytoplankton assemblages. High fish biomass strongly reduced cladoceran abundance (through predation). Silver carp inefficiently grazed down particles < 20 μm. More importantly, however, the suppression of herbivorous cladocerans resulted in the increase of small size algae which were relieved from grazing and benefit from high nutrient concentrations. In contrast, in mesocosms without fish, the dominance of cladocerans (mainly Daphnia) controlled small size algae and probably also larger size algae (colonial chlorophytes, cyanobacteria). Thus, the Secchi disc transparency increased markedly. Through cascade effects, the modification of grazers communities led to changes in the utilization patterns of the added nutrients by phytoplankton communities. In high fish biomass treatments, nutrients were more efficiently accumulated into particulate fractions compared with no-fish and low-fish biomass treatments that were characterized by higher dissolved nutrients concentrations. Zooplankton was an essential source of food for silver carp. The productivity of zooplankton sustained a moderate silver carp biomass (up to 16 g m−3). In the presence of the highest fish biomass, the productivity of zooplankton was not large enough and silver carps fed on additional phytoplankton. Although mesocosms with high fish biomass were characterized by a slight cyanobacteria development compared with other fish mesocosms, silver carp was not effective in reducing cyanobacteria dominance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé - RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry.  相似文献   

20.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号