首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rat apolipoprotein (apo) A-I and A-IV, isolated from both lymph chylomicrons and serum high density lipoproteins (HDL) were analyzed by isoelectric focusing. Lymph chylomicron apo A-I consisted for 81 +/- 2% of the pro form and for 19 +/- 2% of the mature form, while apo A-I isolated from serum HDL was present for 36 +/- 4% in the pro form and for 64 +/- 4% in the mature form. Apo A-IV also showed two major protein bands after analysis by isoelectric focusing. The most prominent component is the more basic protein that amounts to 80 +/- 2% in apo A-IV isolated from lymph chylomicrons and to 60 +/- 3% in apo A-IV isolated from serum HDL. Apo A-I (or apo A-IV), isolated from both sources (lymph chylomicrons or serum HDL), was iodinated and the radioactive apolipoproteins were incorporated into rat serum lipoproteins. The resulting labeled HDL was isolated from serum by molecular sieve chromatography on 6% agarose columns and injected intravenously into rats. No difference in the fractional turnover rate or the tissue uptake of the two labeled HDL preparations was observed, neither for apo A-I nor for apo A-IV. It is concluded that the physiological significance of the extracellular pro apo A-I conversion or the post-translational modification of apo A-IV is not related to the fractional turnover rate in serum or to the rate of catabolism in liver and kidneys.  相似文献   

3.
4.
Apolipoprotein A-IV is a member of the apo A-I/C-III/A-IV gene cluster. In order to investigate its hypothetical coordinated regulation, an acute phase was induced in pigs by turpentine oil injection. The hepatic expression of the gene cluster as well as the plasma levels of apolipoproteins were monitored at different time periods. Furthermore, the involvement of the inflammatory mediators' interleukins 1 and 6 and tumor necrosis factor in the regulation of this gene cluster was tested in cultured pig hepatocytes, incubated with those mediators and apo A-I/C-III/A-IV gene cluster expression at the mRNA level was measured. In response to turpentine oil-induced inflammation, a decreased hepatic apo A-IV mRNA expression was observed (independent of apo A-I and apo C-III mRNA) not correlating with the plasma protein levels. The distribution of plasma apo A-IV experienced a shift from HDL to larger particles. In contrast, the changes in apo A-I and apo C-III mRNA were reflected in their corresponding plasma levels. Addition of cytokines to cultured pig hepatocytes also decreased apo A-IV and apo A-I mRNA levels. All these results show that the down-regulation of apolipoprotein A-I and A-IV messages in the liver may be mediated by interleukin 6 and TNF-alpha. The well-known HDL decrease found in many different acute-phase responses also appears in the pig due to the decreased expression of apolipoprotein A-I and the enlargement of the apolipoprotein A-IV-containing HDL.  相似文献   

5.
The effects of probucol on lipoprotein metabolism in the rat   总被引:1,自引:0,他引:1  
The effects of probucol on liver and intestinal apolipoprotein, LDL-receptor and hepatic lipase gene expression, as well as plasma lipid and apolipoprotein levels and liver lipase activity were evaluated in male rats. Administration of probucol decreased plasma triacylglycerols, without affecting plasma cholesterol. Plasma apo E and apo B concentrations increased after probucol. Since liver and intestinal apo B and apo E mRNA levels remained unchanged, this increase could be attributed to a delayed clearance by the LDL-receptor, whose mRNA levels dropped by 50% in the liver. For the HDL-apolipoproteins, only liver apo A-IV mRNA levels decreased after probucol, which was reflected by a fall of plasma apo A-IV. Neither hepatic lipase activity nor mRNA levels were significantly influenced by probucol.  相似文献   

6.
7.
The effects of injection of purified human or rat apolipoprotein (apo) A-I (1.7 mg/100 g body weight) on the size and composition of rat high density lipoprotein (HDL) particles have been investigated. The injection of human apo A-I results in the formation (over a period of 3 to 6 h) of a population of smaller HDL particles resembling human HDL3. This population of smaller particles contains human apo A-I and rat apo A-IV but lacks rat apo A-I and rat apo E. Small HDL3-like particles are not detected in rat plasma following the injection of rat apo A-I. Associated with the injection of either human or rat apo A-I is a gradual increase of plasma cholesterol levels of 20 to 50% (over 24 h) and the appearance of larger HDL particles. The results suggest that the smaller HDL particles in human plasma compared to rat plasma are not simply due to the action of lipid modifying enzymes or lipid transfer proteins but a specific property of human apo A-I.  相似文献   

8.
The ability of rat intestine and liver to synthesize the main constitutive apoproteins of HDL (apolipoproteins (apo) A-I, A-IV and E) was studied by incorporation of [3H]leucine in vitro at different stages of perinatal life. In both organs, apoprotein synthesis was barely detectable at day 18 of gestation; it was initiated 2 days before the end of gestation. Apo A-I synthesis leveled off at birth in the intestine but kept increasing in the liver during suckling. Intestinal apo A-IV and hepatic apo E synthesis became stable 5 days after birth. Hormonal determination of apo A-I synthesis was examined at different ages in jejunum cultured for 48 h in vitro in the presence of effectors. The addition of dexamethasone to the culture medium was without effect on intestine explanted either at day 18 of gestation or at different postnatal ages (0, 2 and 5 days), but induced the specific stimulation of apo A-I synthesis at day 20 of gestation. At this stage, triiodothyronine alone was ineffective, whereas it enhanced the dexamethasone-induced stimulation. Apo A-I synthesis remained unaffected by insulin alone or combined with the glucocorticoid. Administration of cortisone acetate to pregnant rats from day 14 of gestation onwards resulted in a stimulation of apo A-I synthesis only when it was prolonged after the 20th day of gestation. No effect of dietary substrates could be obtained in vitro. It is concluded that glucocorticoids specifically potentiate prenatal apo A-I synthesis in the rat intestine but that their action is limited to the days immediately preceding birth. They cannot induce early maturation nor stimulate existing synthesis.  相似文献   

9.
In previous studies we had shown that: one of the most specific feature of hyperlipoproteinemia found in rats with experimental nephrotic syndrome is the accumulation of apolipoprotein A-I-rich HDL in plasma and this disorder is associated with an overproduction of apolipoprotein A-I by the liver. The present study was designed to investigate whether the increased hepatic synthesis of apolipoprotein A-I was due to an accumulation of functionally active apolipoprotein A-I mRNA in liver of nephrotic rats. Hepatic mRNA was translated in vitro by rabbit reticulocyte lysate in the presence of [35S]methionine and in vitro synthesized apolipoprotein A-I, albumin and apolipoprotein E were immunoprecipitated by specific rabbit IgG. In nephrotic rats the amount of in vitro synthesized apolipoprotein A-I was almost twice that found in the controls, suggesting that functionally active apolipoprotein A-I mRNA was increased in liver of nephrotic rats. To confirm that this difference in apolipoprotein A-I mRNA activity was due to an actual increase of hepatic apolipoprotein A-I mRNA sequences, we performed nucleic acid hybridization experiments (northern blot) using several cloned cDNA probes (rat and human apolipoprotein A-I, rat apolipoprotein E and apolipoprotein A-II). The results indicate that in nephrotic rats the amount of hybridizable apolipoprotein A-I mRNA sequences was about 3-fold higher than that in controls. In contrast, there was no difference in the amount of hybridizable apolipoprotein A-II and apolipoprotein E mRNA sequences, indicating that the change in apolipoprotein A-I mRNA induced by the nephrotic state was specific for this mRNA.  相似文献   

10.
Metabolism of apolipoprotein (apo)A-I was studied in normal and chow-fed hyperthyroid rats, in 24-h fasted untreated male rats, and in rats after thyroparathyroidectomy (TXPTX). Rats were made hyperthyroid by administration of T3 (9.6 micrograms/day) or T4 (30 micrograms/day) with an Alzet osmotic minipump. Hyperthyroidism produced a similar two- to threefold elevation in plasma levels of apoA-I in male or female animals. During treatment with T3, plasma levels of T3 ranged from 200 to 400 ng/dl and did not correlate with plasma apoA-I levels. The net mass secretion and synthesis ([3H]leucine incorporation) of apoA-I by perfused livers from male hyperthyroid rats was elevated, while secretion of albumin was not different than that of euthyroid rats. Furthermore, the incorporation of [3H]leucine into total perfusate and hepatic protein was not altered by hyperthyroidism. The effect of thyroid hormone on apoA-I synthesis, therefore, does not appear to be a general effect on protein synthesis. After longer periods of treatment (28 days) with T3 (9.6 micrograms/day), hepatic apoA-I production decreased from that observed after 7 or 14 days of treatment, yet plasma apoA-I concentrations remained elevated. Plasma T3 decreased from 100 ng/dl to 40 ng/dl, in the hypothyroid rat resulting from TXPTX, but the plasma concentration of apoA-I did not change during the 2-week experimental period. The net secretion of apoA-I by livers from hypothyroid animals was depressed and albumin was uneffected compared to the euthyroid. Overnight fasting of euthyroid rats did not alter hepatic apoA-I secretion or plasma apoA-I levels, although under fasting conditions we had reported that hepatic output of apoB and E of VLDL is depressed. The addition of oleic acid to the perfusion medium, sufficient to stimulate VLDL production, did not affect net hepatic secretion of apoA-I by livers from euthyroid, hyperthyroid, or hypothyroid rats. In summary, hepatic synthesis of apoA-I appears to be controlled independently of other apo-lipoproteins and secretory proteins (albumin). Hepatic apoA-I synthesis is sensitive to thyroid status, increased in the hyperthyroid and decreased in the hypothyroid state. The specific stimulation of hepatic synthesis and secretion of apoA-I in the hyperthyroid state, however, tends to normalize over an extended period, perhaps from compensatory effects of a hormonal nature.  相似文献   

11.
Hepatic lipocytes, the retinoid-storing cells of the liver, share several characteristics with vascular smooth muscle cells. To determine whether they also share the characteristic of apolipoprotein E secretion, we have compared the relative mRNA expression and protein secretion of apolipoprotein E, apolipoprotein A-I, and apolipoprotein A-IV in early primary cultures of lipocytes, hepatocytes, and Kupffer cells. Expression of apolipoprotein mRNAs was detected using the polymerase chain reaction and oligonucleotide primers specific for apolipoprotein E, apolipoprotein A-I, and apolipoprotein A-IV. Cellular mRNA concentrations were compared by dot blot analysis, and apolipoprotein secretion was assessed by immunoblot analysis of culture media. Apolipoprotein E mRNA was found in all three cell types, whereas apolipoprotein A-I and A-IV mRNAs were detected only in hepatocytes. Hepatocyte, lipocyte, and Kupffer cell media all contained a Mr approximately 36,000 protein identified by an antibody specific for rat apolipoprotein E. The relative concentration of apolipoprotein E mRNA per microgram of total cellular RNA in lipocytes, hepatocytes, and Kupffer cells was 1.0, 3.0, and 1.6, respectively. The relative secretion of apolipoprotein E per cell was also lowest in lipocytes, being twofold greater in hepatocytes and 1.4-fold greater in Kupffer cells. The secretion of apolipoprotein E by lipocytes is not only an additional smooth muscle cell-like characteristic of the hepatic lipocyte, but also raises the possibility of retinol mobilization upon apolipoprotein secretion.  相似文献   

12.
Apolipoprotein A-IV (apo A-IV), a peptide expressed by enterocytes in the mammalian small intestine and released in response to long-chain triglyceride absorption, may be involved in the regulation of gastric acid secretion and gastric motility. The specific aim of the present study was to determine the pathway involved in mediating inhibition of gastric motility produced by apo A-IV. Gastric motility was measured manometrically in response to injections of either recombinant purified apo A-IV (200 microg) or apo A-I, the structurally similar intestinal apolipoprotein not regulated by triglyceride absorption, close to the upper gastrointestinal tract in urethane-anesthetized rats. Injection of apo A-IV significantly inhibited gastric motility compared with apo A-I or vehicle injections. The response to exogenous apo A-IV injections was significantly reduced by 77 and 55%, respectively, in rats treated with the CCK(1) receptor blocker devazepide or after functional vagal deafferentation by perineural capsaicin treatment. In electrophysiological experiments, isolated proximal duodenal vagal afferent fibers were recorded in vitro in response to close-arterial injection of vehicle, apo A-IV (200 microg), or CCK (10 pmol). Apo A-IV stimulated the discharge of duodenal vagal afferent fibers, significantly increasing the discharge in 4/7 CCK-responsive units, and the response was abolished by CCK(1) receptor blockade with devazepide. These data suggest that apo A-IV released from the intestinal mucosa during lipid absorption stimulates the release of endogenous CCK that activates CCK(1) receptors on vagal afferent nerve terminals initiating feedback inhibition of gastric motility.  相似文献   

13.
Apolipoprotein A-IV was isolated from the d less than 1.21 g/ml fraction of rat serum by gel filtration followed by heparin-Sepharose affinity chromatography; this method also facilitated the preparation of apolipoprotein A-I and apolipoprotein E. The apolipoprotein A-IV preparation was characterized by SDS-gel electrophoresis, isoelectric focusing, amino acid analysis and immunodiffusion. The lipid-binding properties of this protein were studied. Apolipoprotein A-IV associated with dimyristoylphosphatidylcholine (DMPC) to form recombinants which contained two molecules of apolipoprotein A-IV and had a lipid/protein molar ratio of 110. The density of the DMPC/apolipoprotein A-IV particles was determined to be 1.08 g/ml and the particles were visualized by electron microscopy as discs which were 5.8 nm thick and 18.0 nm in diameter. The stability of the DMPC/apolipoprotein A-IV recombinants, as determined by resistance to denaturation, was comparable to the stability of DMPC/apolipoprotein A-I complexes. However, by competition studies it was found that apolipoprotein A-I competed for the binding to DMPC more effectively than did apolipoprotein A-IV. It is concluded that, while rat apolipoprotein A-IV resembles other apolipoproteins in its lipid-binding characteristics, it may be displaced from lipid complexes by apolipoprotein A-I.  相似文献   

14.
The present investigation aimed at defining the localization of apolipoproteins (apo) A-I, A-IV, B-48, and B-100 along the crypt-villus axis of the human fetal colon, their biogenesis during gestation, and their hormonal regulation. Using immunofluoresence, the distribution of apo A-I and A-IV appeared as a gradient, increasing from the developing crypt to the tip of the villus. On the other hand, apo B-100 staining was found in the crypt and the lower mid-villus region with varying intensities in the upper villus cells, while the 2D8 antibody which recognizes both apo B-100 and B-48, revealed uniform staining along the crypt-villus axis. Apolipoprotein synthesis, determined by [35S] methionine labeling, immunoprecipitation, and SDS-PAGE showed a predominance of apo A-IV (53%), followed by apo A-I (23.9%), apo B-48 (13.4%), and apo B-100 (9.7%). The synthesis of each apolipoprotein was significantly modulated by hydrocortisone, insulin and epidermal growth factor (EGF). Apart from a decrease in apo B-100 exerted by EGF and a reduction in apo A-I resulting from the addition of insulin, the other apolipoproteins were all enhanced. Our data confirm that the fetal colon has the capacity to synthesize apolipoprotein A-I, A-IV, B-48, and B-100 and establish that their synthesis are modulated by hormonal and growth factors known to be involved in the regulatory mechanism of the functional development of human jejunum. J. Cell. Biochem. 70:354–365, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Apolipoprotein A-IV, apolipoprotein E-2 and apolipoprotein E-3 were individually incorporated into defined phosphatidylcholine/cholesterol liposomes for study of lecithin:cholesterol acyltransferase activation. Enzyme activities obtained with these liposomes were compared with that from liposomes containing purified apolipoprotein A-I. Apolipoprotein A-IV, apolipoprotein E-2, and apolipoprotein E-3 all activated lecithin:cholesterol acyltransferase. With purified enzyme and with egg yolk phosphatidylcholine as the acyl donor, maximal activation was obtained at a concentration of approximately 0.5 nmol for apolipoprotein A-IV and 0.4 nmol for the apolipoprotein E isoforms. Apolipoprotein A-IV was approximately 25% as efficient as apolipoprotein A-I for the activation of purified enzyme; apolipoprotein E-2 was 40% as efficient, and apolipoprotein E-3, 30%. Similar activation results were obtained using plasma as the enzyme source. Analysis of the plasma of patients with absence of apolipoprotein A-I or with only trace amounts of apolipoprotein A-I exhibited a reduced rate of cholesterol esterification and lecithin:cholesterol acyltransferase activity that was proportional to the reduced level of the enzyme's mass. These results indicate that apolipoprotein A-IV and apolipoprotein E may serve as physiological cofactors for the enzyme reaction.  相似文献   

16.
Recently developed molecular probes for human apolipoprotein (apo) genes have been used to study the specificity of human tissue expression of the apo A-I, apo C-II, apo C-III, and apo E genes. We have found that apo E mRNA was present in all tissues examined. On the basis of total RNA concentration the relative abundance of apo E mRNA expressed as a percentage of the liver value is as follows: adrenal gland and macrophages, 74-100%; gonads and kidney, 12-15%; spleen, brain, thymus, ovaries, intestine, and pancreas, 3-9%; heart, 1.5%; stomach, striated muscle, and lung, less than 1%. The relative concentration of apo E mRNA in cultures of human peripheral blood monocyte-macrophages increases dramatically as a function of time in culture, and after 5 days, it compares to that of liver. The human tissues shown to synthesize apo E mRNA were also examined for their ability to synthesize apo A-I, apo C-II, and apo C-III mRNA. The relative abundance of apo A-I, apo C-III, and apo C-II mRNA expressed as a percentage of the liver value is as follows: apo A-I, intestine, 50%; apo A-I, pancreas and gonads, 12%; apo A-I, kidney, 4%; apo A-I, adrenal, 2.5%; apo A-I, ovaries and heart, 1%; apo A-I, stomach and thymus, less than 1%; apo C-III, intestine, 62%; apo C-III, pancreas, 7%; apo C-II, intestine, 3%; apo C-II, pancreas, less than 1%. The knowledge of tissue specificities in the synthesis of apolipoproteins is important for our understanding of the regulation of apolipoproteins and lipoprotein metabolism.  相似文献   

17.
The purpose of this study was to identify the apolipoprotein A-containing lipoprotein particles produced by HepG2 cells. The apolipoprotein A-containing lipoproteins separated from apolipoprotein B-containing lipoproteins by affinity chromatography of culture medium on concanavalin A were fractionated on an immunosorber with monoclonal antibodies to apolipoprotein A-II. The retained fraction contained apolipoproteins A-I, A-II and E, while the unretained fraction contained apolipoproteins A-I and E. Both fractions were characterized by free cholesterol as the major and triglycerides and cholesterol esters as the minor neutral lipids. Further chromatography of both fractions on an immunosorber with monoclonal antibodies to apolipoprotein A-I showed that 1) apolipoprotein A-II only occurs in association with apolipoprotein A-I, 2) apolipoprotein A-IV is only present as part of a separate lipoprotein family (lipoprotein A-IV), and 3) apolipoprotein E-enriched lipoprotein A-I:A-II and lipoprotein A-I are the main apolipoprotein A-containing lipoproteins secreted by HepG2 cells.  相似文献   

18.
The effects of altered serum 3,3',5-triiodothyronine levels on rat lipoprotein metabolism were examined. Daily injections of the hormone (50 micrograms/100 g body mass) over a period of six days led to an increase of 6.4-fold in the hepatic mRNA level for apolipoprotein(apo)A-I, and a 21% increase in serum apoA-I levels. 12h after a single injection of 3,3',5-triiodothyronine the rate of [14C]leucine incorporation into apoA-I increased 2.1 fold. Conversely, in hypothyroid rats there was a decrease in hepatic mRNA levels for apoA-I and a decreased rate of [14C]leucine incorporation into apoA-I. The increase in hepatic apoA-I mRNA levels following 3,3',5-triiodothyronine treatment occurred prior to significant changes in serum triacylglycerol levels. High-density lipoprotein (HDL) particles isolated from the serum of hyperthyroid rats were smaller and enriched in apoA-I compared to apoA-IV and apoE. Similar changes in HDL composition were observed following in vitro incubations of normal rat serum with purified rat apoA-I. The results suggest that during altered thyroid status, changes in serum HDL size and composition occur in association with significant changes in apoA-I gene expression.  相似文献   

19.
Induction of liver apolipoprotein A-IV mRNA in porphyric mice.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have isolated cDNA clones for mRNAs that are induced by porphyria from a mouse liver library. Of the three inducible clones isolated, we have identified one as being apolipoprotein A-IV (apo A-IV) by its extensive homology with a rat apolipoprotein A-IV cDNA sequence. The level of liver apo A-IV mRNA increases rapidly in response to either of two porphyrogenic drugs. When the ferrochelatase-inhibited drug, 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC) is used, a 6 and 28 fold induction of liver apo A-IV mRNA is observed in male and female mice, respectively. If the heme-destroying porphyrogenic drug, allylisopropylacetamide (AIA) is the inducing agent, liver apo A-IV mRNA levels increase 2-3 fold in both males and females. The level of apo A-IV mRNA reaches a maximum within 6-10 hr. after drug administration. Intestine apo A-IV mRNA levels do not change during either of these drug-induced porphyrias. RNA from acute-phase responsive liver or liver from mice treated with bilirubin, porphobilinogen, or protoporphyrin IX show no increase in apo A-IV mRNA. These results indicate that apo A-IV induction is tied to a disruption in porphyrin-heme biosynthesis but is not directly affected by several heme intermediates nor by the major heme degradation product, bilirubin.  相似文献   

20.
We examined the effect of daily fat supplementation on intestinal gene expression and protein synthesis and plasma levels of apolipoprotein A-IV (apo A-IV). Rats were fasted overnight and then given intragastric bolus infusion of either saline or fat emulsion after 0, 1, 2, 4, 8, or 16 days of similar daily feedings. Four hours after the final saline or fat infusion, plasma and jejunal mucosa were harvested; plasma levels of apo A-IV, triglycerides, and leptin were measured, as well as mucosal apo A-IV mRNA levels and biosynthesis of apo A-IV protein. In response to fat, plasma apo A-IV showed an initial 40% increase compared with saline-injected control rats; with continued daily fat feeding, the plasma A-IV response showed rapid and progressive diminution such that by 4 days, plasma A-IV was not different between fat- and saline-fed groups. Jejunal mucosal apo A-IV synthesis and mRNA levels also showed time-dependent refractoriness to fat feeding. However, the kinetics of this effect were considerably slower than in the case of plasma, requiring 16 days for completion. There was no correlation between plasma leptin or triglyceride levels and intestinal apo A-IV synthesis or plasma apo A-IV. These results indicate rapid, fat-induced, posttranslational adapation of plasma apo A-IV levels and a slower, but similarly complete pretranslational adaptation of intestinal apo A-IV production, which are independent of plasma levels of leptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号