首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have previously shown that the extracellular calcium-sensing receptor (CaR) is expressed in various bone marrow-derived cell lines and plays an important role in stimulating their proliferation and chemotaxis. It has also been reported that the CaR modulates matrix production and mineralization in chondrogenic cells. However, it remains unclear whether the CaR plays any role in regulating osteoblast differentiation. In this study, we found that mineralization of the mouse osteoblastic MC3T3-E1 cells was increased when the cells were exposed to high calcium (2.8 and 3.8 mM) or a specific CaR activator, NPS-R467 (1 and 3 microM). Next, we stably transfected MC3T3-E1 cells with either a CaR antisense vector (AS clone) or a vector containing the inactivating R185Q variant of the CaR (DN clone) that has previously been shown to exert a dominant negative action. Alkaline phosphatase activities were decreased compared with controls in both the AS and DN clones. However, the levels of type I procollagen and osteopontin mRNA in the AS clone, as detected by Northern blotting, were almost the same as in the controls. On the other hand, the expression of osteocalcin, which is expressed at a later stage of osteoblastic differentiation, was significantly reduced in both the AS and DN clones. Mineralization was also decreased in both clones. In conclusion, this study showed that the abolition of CaR function results in diminishing alkaline phosphatase activity, osteocalcin expression, and mineralization in mouse osteoblastic cells. This suggests that the CaR may be involved in osteoblastic differentiation.  相似文献   

3.
4.
Smad3, a critical component of the TGF-beta signaling pathways, plays an important role in the regulation of bone formation. However, how Smad3 affects osteoblast at the different differentiation stage remains still unknown. In the present study, we examined the effects of Smad3 on osteoblast phenotype by employing mouse bone marrow ST-2 cells and mouse osteoblastic MC3T3-E1 cells at the different differentiation stage. Smad3 overexpression significantly inhibited bone morphogenetic protein-2 (BMP-2)-induced ALP activity in ST-2 cells, indicating that Smad3 suppresses the commitment of pluripotent mesenchymal cells into osteoblastic cells. Smad3 increased the levels of COLI and ALP mRNA at 7 day cultures in MC3T3-E1 cells, and its effects on COL1 were decreased as the culture periods progress, although its effects on ALP were sustained during 21 day cultures. Smad3 overexpression enhanced the level of Runx2 and OCN mRNA at 14 day and 21 day cultures. Smad3 increased the levels of MGP and NPP-1 mRNA, although the extent of increase in MGP and NPP-1 was reduced and enhanced during the progression of culture period, respectively. Smad3 did not affect the level of ANK mRNA. On the other hand, Smad3 enhanced the level of MEPE mRNA at 14 and 21 day cultures, although Smad3 decreased it at 7 day cultures. In conclusion, Smad3 inhibits the osteoblastic commitment of ST-2 cells, while promotes the early stage of differentiation and maturation of osteoblastic committed MC3T3-E1 cells. Also, Smad3 enhanced the expression of mineralization-related genes at the maturation phase of MC3T3-E1 cells.  相似文献   

5.
The mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.8, UMR-106) and mouse (MC3T3-E1) osteoblastic cell lines contained immunodetectable p44mapk/ERK1 and p42mapk/ERK2. MAP kinase activity was measured by 'in-gel' assay myelin basic protein as the substrate. Mainly ERK2 was rapidly activated (within 10 min) by bFGF, IGF-I and PDGF-BB in normal HOB, HBMS and human osteosarcoma cells, whereas both ERK1 and ERK2 were activated by growth factors in rat osteoblast-like cell lines, ROS 17/2.8 and UMR-106. The ERK1 activation was greater than the ERK2 in ROS 17/2.8 cells. Furthermore, ERK2 was also activated by bFGF and PDGF-BB in the mouse osteoblastic cell line, MC3T3-E1. This is the first demonstration of inter-species differences in the activation of MAP kinases in osteoblastic cells. Cyclic AMP derivatives or cAMP generating agents such as PTH and forskolin inhibited ERK2 activation by bFGF and PDGF-BB suggesting a 'cross-talk' between the two different signalling pathways activated by receptor tyrosine kinases and cAMP-dependent protein kinase. The accumulated results also suggest that the MAP kinases may be involved in mediating mitogenic and other biological actions of bFGF, IGF-I and PDGF-BB in normal human osteoblastic and bone marrow stromal cells.  相似文献   

6.
BMPs play an important role in both intramembranous and endochondral ossification. BIG-3, BMP-2-induced gene 3 kb, encodes a WD-40 repeat protein that accelerates the program of osteoblastic differentiation in vitro. To examine the potential interactions between BIG-3 and the BMP-2 pathway during osteoblastic differentiation, MC3T3-E1 cells stably transfected with BIG-3 (MC3T3E1-BIG-3), or with the empty vector (MC3T3E1-EV), were treated with noggin. Noggin treatment of pooled MC3T3E1-EV clones inhibited the differentiation-dependent increase in AP activity observed in the untreated MC3T3E1-EV clones but did not affect the increase in AP activity in the MC3T3E1-BIG-3 clones. Noggin treatment decreased the expression of Runx2 and type I collagen mRNAs and impaired mineralized matrix formation in MC3T3E1-EV clones but not in MC3T3E1-BIG-3 clones. To determine whether the actions of BIG-3 on osteoblast differentiation converged upon the BMP pathway or involved an alternate signaling pathway, Smad1 phosphorylation was examined. Basal phosphorylation of Smad1 was not altered in the MC3T3E1-BIG-3 clones. However, these clones did not exhibit the noggin-dependent decrease in phosphoSmad1 observed in the MC3T3E1-EV clones, nor did it decrease nuclear localization of phosphoSmad1. These observations suggest that BIG-3 accelerates osteoblast differentiation in MC3T3-E1 cells by inducing phosphorylation and nuclear translocation of Smad1 independently of endogenously produced BMPs.  相似文献   

7.
8.
Although the neuropeptide Y (NPY) family has been demonstrated to control bone metabolism, the role of pancreatic polypeptide (PP), which has structural homology with NPY and peptide YY (PYY) to share the NPY family receptors, in peripheral bone tissues has remained unknown. In the present study, we studied the regulatory roles of PP and its Y receptors using MC3T3-E1 cells, a murine transformed osteoblastic cell line, as a model for osteoblastic differentiation. We found that (1) PP mRNA was detected and increased during cell-contact-induced differentiation in MC3T3-E1 cells; (2) the immunoreactivity of PP was detected by radioimmunoassay and increased in culture medium during differentiation; (3) all the types of NPY family receptor mRNAs (Y1, Y2, Y4, Y5, and y6) were found to increase during differentiation; (4) PP stimulated differentiation in MC3T3-E1 cells in terms of ALP mRNA and BMP-2 mRNA. These findings suggested that MC3T3-E1 cells produce and secrete PP, which may in turn stimulate the differentiation of MC3T3-E1 through its specific receptors in an autocrine manner.  相似文献   

9.
The role that androgens play in the regulation of bone metabolism has been substantiated in animals and humans. We previously demonstrated that testosterone inhibits osteoclast differentiation stimulated by parathyroid hormone through the androgen receptor in mouse bone-cell cultures. However, the details of this mechanism are still unknown. The present study was aimed at examining whether testosterone would affect the mRNA levels of osteoprotegerin (OPG) and receptor activator of Nf kappa B ligand (RANKL) in mouse bone-cell cultures as well as mouse osteoblastic cell-line, MC3T3-E1 cells by employing semi-quantitative RT-PCR. Testosterone increased OPG mRNA expression in both mouse bone-cell cultures and MC3T3-E1 cells. 10-8 M PTH-(1-34) as well as 10-8M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibited OPG mRNA expression in mouse bone cells. 10-8 M testosterone antagonized OPG mRNA expression inhibited by 10-8 M PTH-(1-34), but failed to affect OPG mRNA expression inhibited by 10-8 M 1,25(OH)2D3. 10-8 M alpha-dehydrotestosterone, a non-aromatizable androgen, increased OPG mRNA expression. On the other hand, testosterone did not affect RANKL mRNA expression in MC3T3-E1 or mouse bone cells. In conclusion, the present study demonstrated that testosterone increased OPG mRNA expression in mouse bone-cell cultures and the osteoblastic cell line. These effects are likely to take place through the androgen receptor.  相似文献   

10.
The bone morphogenetic proteins (BMPs) play a pivotal role in endochondral bone formation. Using differential display polymerase chain reaction, we have identified a novel gene, named BIG-3 (BMP-2-induced gene 3 kb), that is induced as a murine prechondroblastic cell line, MLB13MYC clone 17, acquires osteoblastic features in response to BMP-2 treatment. The 3-kilobase mRNA encodes a 34-kDa protein containing seven WD-40 repeats. Northern and Western analyses demonstrated that BIG-3 mRNA and protein were induced after 24 h of BMP-2 treatment. BIG-3 mRNA was expressed in conditionally immortalized murine bone marrow stromal cells, osteoblasts, osteocytes, and growth plate chondrocytes, as well as in primary calvarial osteoblasts. Immunohistochemistry demonstrated that BIG-3 was expressed in the osteoblasts of calvariae isolated from mouse embryos. To identify a role for BIG-3 in osteoblast differentiation, MC3T3-E1 cells were stably transfected with the full-length coding region of BIG-3 (MC3T3E1-BIG-3) cloned downstream of a cytomegalovirus promoter in pcDNA3.1. Pooled MC3T3E1-BIG-3 clones expressed alkaline phosphatase activity earlier and achieved a peak level of activity 10-fold higher than cells transfected with the empty vector (MC3T3E1-EV) at 14 days. Cyclic AMP production in response to parathyroid hormone was increased 10- and 14-fold at 7 and 14 days, respectively, in MC3T3E1-BIG-3 clones, relative to MC3T3E1-EV clones. This increase in cAMP production was associated with an increase in PTH binding. Expression of BIG-3 increased mRNA levels encoding Cbfa1, type I collagen, and osteocalcin and accelerated formation of mineralized nodules. In conclusion, we have identified a novel WD-40 protein, induced by BMP-2 treatment, that dramatically accelerates the program of osteoblastic differentiation in stably transfected MC3T3E1 cells.  相似文献   

11.
We investigated the effects of acerogenin A, a natural compound isolated from Acer nikoense Maxim, on osteoblast differentiation by using osteoblastic cells. Acerogenin A stimulated the cell proliferation of MC3T3-E1 osteoblastic cells and RD-C6 osteoblastic cells (Runx2-deficient cell line). It also increased alkaline phosphatase activity in MC3T3-E1 and RD-C6 cells and calvarial osteoblastic cells isolated from the calvariae of newborn mice. Acerogenin A also increased the expression of mRNAs related to osteoblast differentiation, including Osteocalcin, Osterix and Runx2 in MC3T3-E1 cells and primary osteoblasts: it also stimulated Osteocalcin and Osterix mRNA expression in RD-C6 cells. The acerogenin A treatment for 3 days increased Bmp-2, Bmp-4, and Bmp-7 mRNA expression levels in MC3T3-E1 cells. Adding noggin, a BMP specific-antagonist, inhibited the acerogenin A-induced increase in the Osteocalcin, Osterix and Runx2 mRNA expression levels. These results indicated that acerogenin A stimulates osteoblast differentiation through BMP action, which is mediated by Runx2-dependent and Runx2-independent pathways.  相似文献   

12.
The roles of Sonic hedgehog (Shh) and Bone morphogenetic protein-2 (Bmp-2) in osteoblast differentiation were investigated using in vitro cell systems. Recombinant amino-terminal portion of SHH (rSHH-N) dose dependently stimulated ALP activity in C3H10T1/2 and MC3T3-E1 cells. rSHH-N induced expression of Osteocalcin mRNA in C3H10T1/2 cells. A soluble form of the receptor for type IA BMP receptor antagonized rSHH-N-induced ALP activity in C3H10T1/2 and MC3T3-E1 cells, indicating that BMPs are involved in SHH-induced osteoblast differentiation. Simultaneous supplement with rSHH-N and BMP-2 synergistically induced ALP activity and expression of Osteocalcin mRNA in C3H10T1/2 cells. Pretreatment with rSHH-N for 6 h enhanced the response to BMP-2 by increasing ALP activity in C3H10T1/2 and MC3T3-E1 cells. Stimulatory effects of rSHH-N and additive effects with rSHH-N and BMP-2 on ALP activity were also observed in mouse primary osteoblastic cells. Transplantation of BMP-2 (1 microg) into muscle of mice induced formation of ectopic bone, whereas transplantation of r-SHH-N (1-5 microg) failed to generate it. These results indicate that Shh plays important roles in osteoblast differentiation by cooperating with BMP.  相似文献   

13.
Type 1 diabetes mellitus is known to be associated with reduced bone mass and increased bone fractures. This is thought to be due to a decrease in osteoblastic bone formation rather than an increase in osteoclastic bone resorption, but the precise mechanism is unknown. In this study, we examined whether or not high glucose or advanced glycation end-products (AGEs), which play key roles in the pathogenesis and complications of diabetes, affect the differentiation of osteoblastic MC3T3-E1 cells. First, MC3T3-E1 cells were incubated in media containing either 22 mM glucose, 22 mM mannitol, 300 microg/ml AGE2, or 300 microg/ml AGE3. Each of these agents alone did not affect the mineralization of the cells by von Kossa staining and Alizarin red staining. However, high glucose but not mannitol or AGEs markedly increased mRNA expression of AGE receptor (RAGE) by real-time PCR. Next, we examined the combined effects of high glucose and AGEs on the differentiation of MC3T3-E1 cells. The combination of 22 mM glucose and 300 microg/ml AGE2 significantly inhibited the mineralization of MC3T3-E1 cells, and 22 mM glucose in combination with either 300 microg/ml AGE2 or AGE3 apparently decreased osteocalcin mRNA expression. These results suggest that high glucose or AGEs alone might have no effect on osteoblastic differentiation, but their combination could additionally or synergistically inhibit osteoblastic mineralization through glucose-induced increase in RAGE expression.  相似文献   

14.
15.
16.
Cadherins, a family of cell-cell adhesion molecules, provide recognition signals that are important for cell sorting and aggregation during tissue development. This study was performed to determine whether distinct cadherin repertoires define tissue-specific lineages during differentiation of immature C3H10T1/2 and C2C12 mesenchymal cells. Both cell lines expressed mRNA for N-cadherin (N-cad), cadherin-11 (C11), and R-cadherin (R-cad). After induction of osteogenesis by recombinant human BMP-2 (rhBMP-2) treatment, steady state N-cad mRNA slightly increased in C3H10T1/2 cells. Likewise, the abundance of C11 mRNA increased in both cell lines, although the changes were more remarkable in C2C12 cells. By contrast, R-cad expression was almost shut off by rhBMP-2. The immature but committed osteoblastic MC3T3-E1 cells exhibited only minor changes in N-cad and C11 mRNA abundance after rhBMP-2 treatment. Whereas adipogenic differentiation was associated with a net decrease of N-cad and C11 expression in C3H10T1/2 cells, induction of myogenesis in C2C12 cells resulted in up-regulation of N-cad, while R-cad mRNA became undetectable in either case. Similarly, the adipocytic 3T3-L1 cells expressed very low levels of all cadherins when fully differentiated. Therefore, the repertoire of cadherins present in undifferentiated mesenchymal cells undergoes distinct changes during transition to mature cell phenotypes. Although neither N-cad nor C11 represent strict tissue-specific markers, the relative abundance of these mesenchymal cadherins defines lineage-specific signatures, perhaps providing recognition signals for aggregation and differentiation of committed precursors.  相似文献   

17.
目的:研究高浓度葡萄糖抑制MC3T3-E1细胞成骨分化的机理。方法:建立MC3T3-E1细胞成骨分化诱导体系,观察不同浓度葡萄糖(5.5mM和22mM)对MC3T3-E1细胞成骨分化的影响;用不同浓度的p38 MAPK抑制剂Fr167653(0.1μM、1.0μM和10μM)进行药物干预,观察MC3T3-E1细胞在22mM葡萄糖浓度下成骨分化的变化情况。通过钙含量检测、Real time PCR检测相关分化的变化;用Western Blot方法检测MC3T3-E1细胞分化过程中p38 MAPK磷酸化状态、TXNIP表达水平的变化;使用胰岛素二硫键还原法检测细胞内TRX活性水平;使用活性氧检测试剂盒检测细胞内自由氧生成水平。结果:体外诱导条件下,高浓度(22mM)葡萄糖通过升高p38 MAPK磷酸化水平,上调TXNIP表达水平,同时降低TRX活性,使细胞内自由氧生成增加,抑制MC3T3-E1细胞的成骨分化;Fr167653通过抑制p38 MAPK磷酸化,下调TXNIP表达同时升高TRX活性,抑制细胞内自由氧生成,解除高浓度葡萄糖对细胞成骨分化的抑制作用。结论:高浓度葡萄糖通过p38 MAPK-TXNIP/TRX-ROS信号通路抑制MC3T3-E1细胞成骨分化。  相似文献   

18.
Tang SY  Xie H  Yuan LQ  Luo XH  Huang J  Cui RR  Zhou HD  Wu XP  Liao EY 《Peptides》2007,28(3):708-718
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of MC3T3-E1 cells. However, apelin stimulated MC3T3-E1 cell proliferation and inhibited cell apoptosis induced by serum deprivation. Our study also shows that apelin decreased cytochrome c release and caspase-3, capase-8 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Apelin activated c-Jun N-terminal kinase (JNK) and Akt (phosphatidylinositol 3-kinase downstream effector), and the JNK inhibitor SP600125, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO) inhibited its effects on proliferation and serum deprivation-induced apoptosis. Furthermore, apelin protected against apoptosis induced by the glucocorticoid dexamethasone or TNF-alpha. Apelin stimulates proliferation and suppresses serum deprivation-induced apoptosis of MC3T3-E1 cells and these actions are mediated via JNK and PI3-K/Akt signaling pathways.  相似文献   

19.
Activation of particular glutamate (Glu) receptors is shown to promote cellular differentiation toward maturation during osteoblastogenesis. In the present study, we have evaluated the possible modulation by Glu of cellular proliferation in osteoblastic cells endowed to proliferate for self-renewal and to differentiate toward matured osteoblasts. Exposure to Glu significantly suppressed the proliferation activity at a concentration over 500 microM without inducing cell death in osteoblastic MC3T3-E1 cells before differentiation. The suppression by Glu occurred in a manner sensitive to the prevention by either cystine or reduced glutathione. Expression of mRNA was for the first time shown with the cystine/Glu antiporter composed of xCT and 4F2hc subunits in these undifferentiated osteoblastic cells. A significant decrease was seen in intracellular total glutathione levels in undifferentiated MC3T3-E1 cells cultured with Glu, indeed, whereas the cellular proliferation activity was drastically decreased by the addition of the glutathione depleter cyclohexene-1-one and the glutathione biosynthesis inhibitor L-buthionine-[S,R]-sulfoximine, respectively. Exposure to Glu led to a significant increase in mRNA expression of nuclear factor E2 p45-related factor 2 (Nrf2) together with the generation of reactive oxygen species, while a significant decrease was seen in the proliferation activity in MC3T3-E1 cells with stable overexpression of Nrf2. These results suggest that Glu could suppress the cellular proliferation toward self-renewal through a mechanism associated with the upregulation of Nrf2 expression in association with the depletion of intracellular glutathione after promoting the retrograde operation of the cystine/Glu antiporter in undifferentiated MC3T3-E1 cells.  相似文献   

20.
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号