首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Homeodomain proteins are characterized by a conserved domain with a helix-turn-helix motif. These proteins act as regulatory factors in tissue differentiation and proliferation. However, their role in the regulation of osteoblast differentiation is unknown. In this study we have identified and characterized a homeobox gene in osteoblast-like cells. This gene, termed rHox, was isolated from a cDNA library derived from rat osteoblast-like cells. The nucleotide sequence of the 1,375 base pair (bp) cDNA contains a noncoding leader sequence of 329 bp, a 735 bp open reading frame, and 312 bp of 3′ noncoding sequence. Sequence comparison demonstrates that rHox is identical to the mouse Pmx gene (also called MHox) at the amino acid level and 90% homologous at the nucleotide level. Both Southwestern blotting and gel shift analyses indicate that rHox has potential to bind both the collagen l α 1 and the osteocalcin promoters. Transfection experiments using an rHox expression vector showed a strong repression of target promoter activity, regardless of whether the target promoters contained homeodomain binding reponse elements. These data suggest that rHox is a potent negative regulator of gene expression, although the specific role of rHox in bone gene regulation remains to be determined. © 1995 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
18.
19.
Dang C  Wang Y  Zhang D  Yao Q  Chen K 《PloS one》2011,6(11):e26878
The giant panda (Ailuropoda melanoleuca) is a critically endangered mammalian species. Studies on functions of regulatory proteins involved in developmental processes would facilitate understanding of specific behavior in giant panda. The basic helix-loop-helix (bHLH) proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, mouse and human. Our present study identified 107 bHLH family members being encoded in giant panda genome. Phylogenetic analyses revealed that they belong to 44 bHLH families with 46, 25, 15, 4, 11 and 3 members in group A, B, C, D, E and F, respectively, while the remaining 3 members were assigned into "orphan". Compared to mouse, the giant panda does not encode seven bHLH proteins namely Beta3a, Mesp2, Sclerax, S-Myc, Hes5 (or Hes6), EBF4 and Orphan 1. These results provide useful background information for future studies on structure and function of bHLH proteins in the regulation of giant panda development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号