首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bcl‐2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro‐apoptotic proteins. Yet the mechanistic details of the Bax‐induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring‐like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super‐resolution data provide direct evidence in support of large Bax‐delineated pores in the mitochondrial outer membrane as being crucial for Bax‐mediated MOMP in cells.  相似文献   

2.
A critical step in apoptosis is mitochondrial outer membrane permeabilization (MOMP), releasing proteins critical to downstream events. While the regulation of this process by Bcl-2 family proteins is known, the role of ceramide, which is known to be involved at the mitochondrial level, is not well-understood. Here, we demonstrate that Bax and ceramide induce MOMP synergistically. Experiments were performed on mitochondria isolated from both rat liver and yeast (lack mammalian apoptotic machinery) using both a protein release assay and real-time measurements of MOMP. The interaction between activated Bax and ceramide was also studied in a defined isolated system: planar phospholipid membranes. At concentrations where ceramide and activated Bax have little effects on their own, the combination induces substantial MOMP. Direct interaction between ceramide and activated Bax was demonstrated both by using yeast mitochondria and phospholipid membranes. The apparent affinity of activated Bax for ceramide increases with ceramide content indicating that activated Bax shows enhanced propensity to permeabilize in the presence of ceramide. An agent that inhibits ceramide-induced but not activated Bax induced permeabilization blocked the enhanced MOMP, suggesting that ceramide is the key permeabilizing entity, at least when ceramide is present. These and previous findings that anti-apoptotic proteins disassemble ceramide channels suggest that ceramide channels, regulated by Bcl-2-family proteins, may be responsible for the MOMP during apoptosis.  相似文献   

3.
Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death.  相似文献   

4.
Bax, a pro-apoptotic Bcl-2 family protein, translocates to mitochondria during apoptosis, where it causes MOMP (mitochondrial outer membrane permeabilization). MOMP releases pro-apoptotic factors, such as cytochrome c and SMAC (second mitochondrial activator of caspases)/Diablo, into the cytosol where they activate caspases. It is often inferred that Bax activation occurs in a single step, a conformational change in the protein causing its translocation and oligomerization into high-molecular-mass membrane pores. However, a number of studies have shown that Bax translocation to mitochondria does not necessarily induce MOMP. Indeed, Bax translocation can occur several hours prior to release of cytochrome c, indicating that its regulation may be a complex series of events, some of which occur following its association with mitochondria. In the present study, we have examined endogenous Bax in epithelial cells undergoing anoikis, a physiologically relevant form of apoptosis that occurs when normal cells lose contact with the ECM (extracellular matrix). Using BN-PAGE (blue native PAGE), we show that Bax forms a 200 kDa complex before caspase activation. Furthermore, Bax in this 200 kDa complex is not in the active conformation, as determined by exposure of N-terminal epitopes. These results indicate that Bax oligomerization is an event that must be interpreted differently from the currently held view that it represents the apoptotic pore.  相似文献   

5.
Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the “pores” and how they are formed remain obscure. We found that mitochondrial outer membranes contained very little cardiolipin, far less than that required for liposome permeabilization, despite their responsiveness to Bcl-2 family proteins. Strikingly, the incorporation of isolated mitochondrial outer membrane (MOM) proteins into liposomes lacking cardiolipin conferred responsiveness to cleaved Bid and Bax. Cardiolipin dependence was observed only when permeabilization was induced with cleaved Bid but not with Bid or Bim BH3 peptide or oligomerized Bax. Therefore, we conclude that MOM proteins specifically assist cleaved Bid in Bax-mediated permeabilization. Cryoelectron microscopy of cardiolipin-liposomes revealed that cleaved Bid and Bax produced large round holes with diameters of 25–100 nm, suggestive of lipidic pores. In sum, we propose that activated Bax induces lipidic pore formation and that MOM proteins assist cleaved Bid in this process in the absence of cardiolipin.  相似文献   

6.
Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation   总被引:1,自引:0,他引:1  

Background

Evidence indicates that Bax functions as a “lipidic” pore to regulate mitochondrial outer membrane permeabilization (MOMP), the apoptosis commitment step, through unknown membrane elements. Here we show mitochondrial ceramide elevation facilitates MOMP-mediated cytochrome c release in HeLa cells by generating a previously-unrecognized mitochondrial ceramide-rich macrodomain (MCRM), which we visualize and isolate, into which Bax integrates.

Methodology/Principal Findings

MCRMs, virtually non-existent in resting cells, form upon irradiation coupled to ceramide synthase-mediated ceramide elevation, optimizing Bax insertion/oligomerization and MOMP. MCRMs are detected by confocal microscopy in intact HeLa cells and isolated biophysically as a light membrane fraction from HeLa cell lysates. Inhibiting ceramide generation using a well-defined natural ceramide synthase inhibitor, Fumonisin B1, prevented radiation-induced Bax insertion, oligomerization and MOMP. MCRM deconstruction using purified mouse hepatic mitochondria revealed ceramide alone is non-apoptogenic. Rather Bax integrates into MCRMs, oligomerizing therein, conferring 1–2 log enhanced cytochrome c release. Consistent with this mechanism, MCRM Bax isolates as high molecular weight “pore-forming” oligomers, while non-MCRM membrane contains exclusively MOMP-incompatible monomeric Bax.

Conclusions/Significance

Our recent studies in the C. elegans germline indicate that mitochondrial ceramide generation is obligate for radiation-induced apoptosis, although a mechanism for ceramide action was not delineated. Here we demonstrate that ceramide, generated in the mitochondrial outer membrane of mammalian cells upon irradiation, forms a platform into which Bax inserts, oligomerizes and functionalizes as a pore. We posit conceptualization of ceramide as a membrane-based stress calibrator, driving membrane macrodomain organization, which in mitochondria regulates intensity of Bax-induced MOMP, and is pharmacologically tractable in vitro and in vivo.  相似文献   

7.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

8.
Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.  相似文献   

9.
Evasion of apoptosis is a significant problem affecting an array of cancers. In order to identify novel regulators of apoptosis, we performed an RNA interference (RNAi) screen against all kinases and phosphatases in the human genome. We identified MK-STYX (STYXL1), a catalytically inactive phosphatase with homology to the mitogen-activated protein kinase (MAPK) phosphatases. Despite this homology, MK-STYX knockdown does not significantly regulate MAPK signaling in response to growth factors or apoptotic stimuli. Rather, RNAi-mediated knockdown of MK-STYX inhibits cells from undergoing apoptosis induced by cellular stressors activating mitochondrion-dependent apoptosis. This MK-STYX phenotype mimics the loss of Bax and Bak, two potent guardians of mitochondrial apoptotic potential. Similar to loss of both Bax and Bak, cells without MK-STYX expression are unable to release cytochrome c. Proapoptotic members of the BCL-2 family (Bax, Bid, and Bim) are unable to trigger cytochrome c release in MK-STYX-depleted cells, placing the apoptotic deficiency at the level of mitochondrial outer membrane permeabilization (MOMP). MK-STYX was found to localize to the mitochondria but is neither released from the mitochondria upon apoptotic stress nor proximal to the machinery currently known to control MOMP, indicating that MK-STYX regulates MOMP using a distinct mechanism.  相似文献   

10.
Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP) is essential for “intrinsic” apoptotic cell death. Published studies used synthetic liposomes to reveal an intrinsic pore-forming activity of Bax, but it is unclear how other mitochondrial outer membrane (MOM) proteins might facilitate this function. We carefully analyzed the kinetics of Bax-mediated pore formation in isolated MOMs, with some unexpected results. Native MOMs were more sensitive than liposomes to added Bax, and MOMs displayed a lag phase not observed with liposomes. Heat-labile MOM proteins were required for this enhanced response. A two-tiered mathematical model closely fit the kinetic data: first, Bax activation promotes the assembly of a multimeric complex, which then catalyzes the second reaction, Bax-dependent pore formation. Bax insertion occurred immediately upon Bax addition, prior to the end of the lag phase. Permeabilization kinetics were affected in a reciprocal manner by [cBid] and [Bax], confirming the “hit-and-run” hypothesis of cBid-induced direct Bax activation. Surprisingly, MOMP rate constants were linearly related to [Bax], implying that Bax acts non-cooperatively. Thus, the oligomeric catalyst is distinct from Bax. Moreover, contrary to common assumption, pore formation kinetics depend on Bax monomers, not oligomers. Catalyst formation exhibited a sharp transition in activation energy at ∼28°C, suggesting a role for membrane lipid packing. Furthermore, catalyst formation was strongly inhibited by chemical antagonists of the yeast mitochondrial fission protein, Dnm1. However, the mammalian ortholog, Drp1, was undetectable in mitochondrial outer membranes. Moreover, ATP and GTP were dispensable for MOMP. Thus, the data argue that oligomerization of a catalyst protein, distinct from Bax and Drp1, facilitates MOMP, possibly through a membrane-remodeling event.  相似文献   

11.
Mitochondrial outer membrane permeabilization by proapoptotic Bcl-2 family proteins, such as Bax, plays a crucial role in apoptosis induction. However, whether this only causes the intracytosolic release of inducers of caspase-dependent death, such as cytochrome c, or also of caspase-independent death, such as apoptosis-inducing factor (AIF) remains unknown. Here, we show that on isolated mitochondria, Bax causes the release of cytochrome c, but not of AIF, and the association of AIF with the mitochondrial inner membrane provides a simple explanation for its lack of release upon Bax-mediated outer membrane permeabilization. In cells overexpressing Bax or treated either with the Bax- or Bak-dependent proapoptotic drugs staurosporine or actinomycin D, or with hydrogen peroxide, caspase inhibitors did not affect the intracytosolic translocation of cytochrome c, but prevented that of AIF. These results provide a paradigm for mitochondria-dependent death pathways in which AIF cannot substitute for caspase executioners because its intracytosolic release occurs downstream of that of cytochrome c.  相似文献   

12.
Mitochondria play a pivotal role in the regulation of apoptosis. An imbalance in apoptosis can lead to disease. Unscheduled apoptosis has been linked to neurodegeneration while inhibition of apoptosis can cause cancer. An early and key event during apoptosis is the release of factors from mitochondria. In apoptosis the mitochondrial outer membrane becomes permeable, leading to release of apoptogenic factors into the cytosol. One such factor, cytochrome c, is an electron carrier of the respiratory chain normally trapped within the mitochondrial intermembrane space. Many apoptotic studies investigate mitochondrial outer membrane permeabilization (MOMP) by monitoring the release of cytochrome c. Here, we describe three reliable techniques that detect cytochrome c release from mitochondria, through subcellular fractionation or immunocytochemistry and fluorescence microscopy, or isolated mitochondria and recombinant Bax and t-Bid proteins in vitro. These techniques will help to identify mechanisms and characterize factors regulating MOMP.  相似文献   

13.
Mitochondrial outer membrane permeabilization (MOMP) and release of mitochondrial intermembrane proteins like cytochrome c are critical steps in the control of apoptosis. Previous work has shown that MOMP depends on the functionally redundant multidomain proapoptotic proteins, Bak and Bax. Here we demonstrate that Bak and Bax are functionally non-redundant during Neisseria gonorrhoeae (Ngo)- and cisplatin-induced apoptosis. While the activation of Bak is caspase independent Bax activation needs Bak and active caspases. Silencing of either Bak or Bax resists both Ngo- and cisplatin- but not TNFalpha-induced apoptosis. Activation of Bak is required to release cytochrome c from the mitochondria; however, Bax is still required to activate effector caspases. Thus, both Bak and Bax are necessary to accomplish DNA damage and Ngo-induced apoptosis.  相似文献   

14.
Bcl-2 family proteins are critical regulators of mitochondrial outer membrane permeabilization (MOMP), which represents the point of no return of apoptotic cell death. The exposure of the Bax N-terminus at the mitochondria reflects Bax activation; and this activated configuration of the Bax protein is associated with MOMP. N-terminal exposure can be detected using specific monoclonal and/or polyclonal antibodies, and the onset of activated Bax has extensively been used as an early marker of apoptosis. The protocols of immunoprecipitation and/or immunocytochemistry commonly used to detect activated Bax are long and tedious, and allow semiquantification of the antigen at best. The sandwich ELISA protocol we developed has a 5 ng/mL detection limit and is highly specific for the activated conformation of Bax. This ELISA allows a rapid quantification of activated human Bax in whole cells and isolated mitochondria protein extracts. These properties grant this assay the potential to further clarify the prognostic and diagnostic value of activated Bax in disorders associated with deregulated apoptotic pathways such as degenerative diseases or cancer.  相似文献   

15.
Mitochondria continually fuse and divide to yield a dynamic interconnected network throughout the cell. During apoptosis, concomitantly with permeabilization of the mitochondrial outer membrane (MOMP) and cytochrome c release, mitochondria undergo massive fission. This results in the formation of small, round organelles that tend to aggregate around the nucleus. Under some circumstances, preceding their fission, mitochondria tend to elongate and to hyperfuse, a process that is interpreted as a cell defense mechanism. Since many years, there is a controversy surrounding the physiological relevance of mitochondrial fragmentation in apoptosis. In this review, we present recent advances in this field, describe the mechanisms that underlie this process, and discuss how they could cooperate with Bax to trigger MOMP and cytochrome c release. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

16.
Although required for life, paradoxically, mitochondria are often essential for initiating apoptotic cell death. Mitochondria regulate caspase activation and cell death through an event termed mitochondrial outer membrane permeabilization (MOMP); this leads to the release of various mitochondrial intermembrane space proteins that activate caspases, resulting in apoptosis. MOMP is often considered a point of no return because it typically leads to cell death, even in the absence of caspase activity. Because of this pivotal role in deciding cell fate, deregulation of MOMP impacts on many diseases and represents a fruitful site for therapeutic intervention. Here we discuss the mechanisms underlying mitochondrial permeabilization and how this key event leads to cell death through caspase-dependent and -independent means. We then proceed to explore how the release of mitochondrial proteins may be regulated following MOMP. Finally, we discuss mechanisms that enable cells sometimes to survive MOMP, allowing them, in essence, to return from the point of no return.In most organisms, mitochondria play an essential role in activating caspase proteases through a pathway termed the mitochondrial or intrinsic pathway of apoptosis. Mitochondria regulate caspase activation by a process called mitochondrial outer membrane permeabilization (MOMP). Selective permeabilization of the mitochondrial outer membrane releases intermembrane space (IMS) proteins that drive robust caspase activity leading to rapid cell death. However, even in the absence of caspase activity, MOMP typically commits a cell to death and is therefore considered a point of no return (Fig. 1). Because of this pivotal role in dictating cell fate, MOMP is highly regulated, mainly through interactions between pro- and antiapoptotic members of the Bcl-2 family. In this article, we begin by discussing how mitochondria may have evolved to become central players in apoptotic cell death. We then provide an overview of current models addressing the mechanics of MOMP, outlining how this crucial event leads to cell death through both caspase-dependent or -independent mechanisms. Finally, we discuss how caspase activity may be regulated post-MOMP and define other processes that allow cells to survive MOMP and, in effect, return from the point of no return.Open in a separate windowFigure 1.Mitochondrial regulation of cell death. Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP) can lead to caspase-dependent apoptosis (left) or caspase-independent cell death (right). Following MOMP, soluble proteins are released from the mitochondrial intermembrane space into the cytoplasm. Cytochrome c binds to monomeric Apaf-1 leading to its conformational change and oligomerization. Procaspase-9 is recruited to heptameric Apaf-1 complexes forming the apoptosome. This leads to activation of caspase-9 and, through caspase-9-mediated cleavage, activation of the executioner caspases-3 and -7. Release of Smac and Omi from the mitochondrial intermembrane space facilitates caspase activation by neutralizing the caspase inhibitor XIAP. MOMP can also lead to nonapoptotic cell death through a gradual loss of mitochondrial function and/or release of mitochondrial proteins that kill the cell in a caspase-independent manner.  相似文献   

17.
In apoptosis, mitochondrial outer membrane permeabilization (MOMP) triggers caspase-dependent death. However, cells undergo clonogenic death even if caspases are blocked. One proposed mechanism involved the release of cytotoxic proteins (e.g., AIF and endoG) from mitochondria. To initiate MOMP directly without side effects, we created a tamoxifen-switchable BimS fusion protein. Surprisingly, even after MOMP, caspase-inhibited cells replicated DNA and divided for ∼48 h before undergoing proliferation arrest. AIF and endoG remained in mitochondria. However, cells gradually lost mitochondrial membrane potential and ATP content, and DNA synthesis slowed to a halt by 72 h. These defects resulted from a partial loss of respiratory function, occurring 4–8 h after MOMP, that was not merely due to dispersion of cytochrome c. In particular, Complex I activity was completely lost, and Complex IV activity was reduced by ∼70%, whereas Complex II was unaffected. Later, cells exhibited a more profound loss of mitochondrial protein constituents. Thus, under caspase inhibition, MOMP-induced clonogenic death results from a progressive loss of mitochondrial function, rather than the release of cytotoxic proteins from mitochondria.  相似文献   

18.
Although mitochondria are usually considered as supporters of life, they are also involved in cellular death. Mitochondrial outer membrane permeabilization (MOMP) is a crucial event during apoptosis because it causes the release of proapoptotic factors from the mitochondrial intermembrane space to the cytosol. MOMP is mainly controlled by the Bcl-2 family of proteins, which consists of both proapoptotic and antiapoptotic members. We discuss the current understanding of how activating and inhibitory interactions within this family lead to the activation and oligomerization of MOMP effectors Bax and Bak, which result in membrane permeabilization. The order of events leading to MOMP is then highlighted step by step, emphasizing recent discoveries regarding the formation of Bax/Bak pores on the outer mitochondrial membrane. Besides the Bcl-2 proteins, the mitochondrial organelle contributes to and possibly regulates MOMP, because mitochondrial resident proteins and membrane lipids are prominently involved in the process.Mitochondria are essential for the life of the cell. They produce most of the ATP via oxidative phosphorylation thanks to the respiratory chain that is embedded in the inner mitochondrial membrane. Consequently, mitochondrial dysfunction is implicated in the development of many human diseases, in particular, neurodegenerative disorders (Lin and Beal 2006). Mitochondria are also prominently involved in cell death, because they play a crucial role in many apoptotic responses. Apoptosis is a self-destruction program that is essential during the development of multicellular organisms. Its dysregulation has also been recognized as a main feature of many pathological conditions, especially cancer (Llambi and Green 2011).The executioners of apoptosis are a family of cysteine proteases termed caspases that cleave a variety of cellular targets, resulting in morphological changes, degradation of genomic DNA, and, ultimately, phagocytic removal of the apoptotic cell (Taylor et al. 2008). Caspases are synthesized as inactive zymogens that become activated after regulated limited proteolysis. Two different pathways of apoptotic signaling that result in the activation of executioner caspases 3 and 7 can be distinguished. In the extrinsic pathway, binding of ligands such as FasL or TNFα to a death receptor on the plasma membrane leads to the activation of initiator caspase 8. Active caspase 8 propagates the signal by directly cleaving and thereby activating caspases 3 and 7, which continue a proteolytic cascade ultimately leading to the removal of the cell.The intrinsic pathway, on the other hand, is initiated upon exposure to a number of stress situations, including DNA damage. A subclass of the Bcl-2 protein family termed BH3-only proteins (see below) becomes activated after an internal stress stimulus and translocates to the outer mitochondrial membrane (OMM), where they orchestrate a process called mitochondrial outer membrane permeabilization (MOMP). As an outcome of this process, pores are formed in the OMM, membrane integrity is lost, and contents of the intermembrane space gain access to the cytosol. One of the molecules that is rapidly released to the cytosol is cytochrome c, which is normally a soluble electron carrier between respiratory complexes III and IV. Together with the proapoptotic cytosolic factor APAF1, cytochrome c assembles into a caspase-activating complex termed the “apoptosome.” This complex subsequently activates caspase 9, which is able to cleave caspases 3 and 7, proceeding with the same downstream cascade as in the extrinsic pathway. Other intermembrane space proteins also contribute to cell death after being released into the cytosol (e.g., SMAC/Diablo, which blocks the caspase inhibitor protein XIAP).Remarkably, the two pathways are not completely independent. Cross talk between the extrinsic and intrinsic pathways exists because of caspase 8-dependent cleavage of the BH3-only protein Bid. Upon cleavage, Bid becomes activated, and the truncated version, tBid, translocates to the surface of mitochondria to induce MOMP. In so-called type II cells, this mitochondrial feedback loop is needed to induce apoptosis through the extrinsic pathway, because of the requirement of XIAP antagonism by SMAC.The loss of OMM integrity caused by MOMP is usually considered the point of no return in the whole process, because cells are committed to die once MOMP is initiated. Therefore, this process represents a major checkpoint of apoptosis and must be tightly controlled to ensure that it is initiated at the right time and place. The main molecular players of MOMP belong to the Bcl-2 protein family. Integration of proapoptotic and antiapoptotic signals by the network of Bcl-2 proteins determines whether or not the OMM is permeabilized. In the following sections, we describe in detail the stimulatory and inhibitory protein–protein interactions within this family, discussing various models of how the MOMP effectors, Bax and Bak, become activated. Furthermore, we focus on the actual event of membrane permeabilization, summarizing the current understanding of how pores are formed in the OMM by Bax and Bak oligomers.  相似文献   

19.
During apoptosis the pro-death Bcl-2 family members Bax and Bak induce mitochondrial outer membrane permeabilization (MOMP) to mediate cell death. Recently, it was shown that Bax and Bak are also required for mitochondrial permeability transition pore (MPTP)-dependent necrosis, where, in their non-oligomeric state, they enhance permeability characteristics of the outer mitochondrial membrane. Necroptosis is another form of regulated necrosis involving the death receptors and receptor interacting protein kinases (RIP proteins, by Ripk genes). Here, we show cells or mice deficient for Bax/Bak or cyclophilin D, a protein that regulates MPTP opening, are resistant to cell death induced by necroptotic mediators. We show that Bax/Bak oligomerization is required for necroptotic cell death and that this oligomerization reinforces MPTP opening. Mechanistically, we observe mixed lineage kinase domain-like (MLKL) protein and cofilin-1 translocation to the mitochondria following necroptosis induction, while expression of the mitochondrial matrix isoform of the antiapoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), is significantly reduced. Some of these effects are lost with necroptosis inhibition in Bax/Bak1 double null, Ppif-/-, or Ripk3-/- fibroblasts. Hence, downstream mechanisms of cell death induced by necroptotic stimuli utilize both Bax/Bak to generate apoptotic pores in the outer mitochondrial membrane as well as MPTP opening in association with known mitochondrial death modifying proteins.  相似文献   

20.
The proapoptotic protein Bax plays an important role in cardiomyocytic cell death. Ablation of this protein has been shown to diminish cardiac damage in Bax-knockout mice during ischemia-reperfusion. Presently, studies of Bax-mediated cardiac cell death examined primarily the expression levels of Bax and its prosurvival factor Bcl-2 rather than the localization of this protein, which dictates its function. Using immunofluorescence labeling, we have shown that in neonatal rat cardiomyocytes and in H9c2 cardiomyoblasts, Bax translocates from cytosol to mitochondria upon the induction of apoptosis by hypoxia-reoxygenation-serum withdrawal and by the presence of the free-radical inducer menadione. Also, we found that Bax translocation to mitochondria was associated with the exposure of an NH2-terminal epitope, and that this translocation could be partially blocked by the prosurvival factors Bcl-2 and Bcl-XL. To visualize the translocation of Bax in living cells, we have developed an H9c2 cell line that stably expresses green fluorescent protein (GFP)-tagged Bax. This cell line has GFP-Bax localized primarily in the cytosol in the absence of apoptotic inducers. Upon induction of apoptosis by a number of stimuli, including menadione, staurosporine, sodium nitroprusside, and hypoxia-reoxygenation-serum withdrawal, we could observe the translocation of Bax from cytosol to mitochondria. This translocation was not affected by retinoic acid-induced differentiation of H9c2 cells. Additionally, this translocation was associated with loss of mitochondrial membrane potential, release of cytochrome c, and fragmentation of nuclei. Finally, using a tetramethylrhodamine-based dye, we have shown that a rapid screening process based on the loss of mitochondrial membrane potential could be developed to monitor GFP-Bax translocation to mitochondria. Overall, the GFP-Bax-stable H9c2 cell line that we have developed represents a unique tool for examining Bax-mediated apoptosis, and it could be of great importance in screening therapeutic compounds that could block Bax translocation to mitochondria to attenuate apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号