首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Water homeostasis is crucial to the growth and survival of plants under water-related stress. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. Here we report the water transport activity and mechanisms for the regulation of barley (Hordeum vulgare) PIP aquaporins. HvPIP2 but not HvPIP1 channels were found to show robust water transport activity when expressed alone in Xenopus laevis oocytes. However, the co-expression of HvPIP1 with HvPIP2 in oocytes resulted in significant increases in activity compared with the expression of HvPIP2 alone, suggesting the participation of HvPIP1 in water transport together with HvPIP2 presumably through heteromerization. Severe salinity stress (200 mM NaCl) significantly reduced root hydraulic conductivity (Lp(r)) and the accumulation of six of 10 HvPIP mRNAs. However, under relatively mild stress (100 mM NaCl), only a moderate reduction in Lp(r) with no significant difference in HvPIP mRNA levels was observed. Sorbitol-mediated osmotic stress equivalent to 100 and 200 mM NaCl induced nearly identical Lp(r) reductions in barley roots. Furthermore, the water transport activity in intact barley roots was suggested to require phosphorylation that is sensitive to a kinase inhibitor, staurosporine. HvPIP2s also showed water efflux activity in Xenopus oocytes, suggesting a potential ability to mediate water loss from cells under hypertonic conditions. Water transport via HvPIP aquaporins and the significance of reductions of Lp(r) in barley plants during salinity stress are discussed.  相似文献   

2.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

3.
The cellular and molecular basis of a reduction in root water uptake in plants exposed to heavy metals such as zinc (Zn) is poorly studied. The aim of the present study on hydroponically grown barley (Hordeum vulgare) was to test whether any reduction in root hydraulic conductivity (Lp) in response to Zn treatment is accompanied by a reduction in cell Lp and gene expression level of aquaporin (AQP) isoforms. Plants were grown in the presence of 0.25 μM, (control), 0.1 and 1 mM Zn in the root medium and analysed when they were 16–18 days old. Root and cell Lp was determined through exudation and cell pressure probe analyses, respectively, and gene expression of five candidate AQPs was analysed [real time quantitative polymerase chain reaction (PCR)]. Zinc treatments caused significant reductions (25–83%) in transpiration rate, root and shoot fresh weight, surface area and stomatal conductance. Zinc concentrations in tissues increased more than 100‐fold. Root Lp decreased by 24% (0.1 mM Zn) and 58% (1 mM Zn), while cell Lp decreased by 45 and 71%, respectively. Gene expression of AQPs decreased by 14–80%; decreases were statistically significant for HvPIP1;3, HvPIP2;4 and HvPIP2;5. Turgor in root cortex cells was not reduced by Zn treatments. It is concluded that reductions in plant water flow in response to Zn treatment are facilitated through decreases in root (Lp) and shoot (stomata) hydraulics. The decrease in root Lp is facilitated through reductions in cell Lp and AQP gene expression and may also reflect increased suberization in the endodermis.  相似文献   

4.
Sodium chloride reduces the growth of rice seedlings, which accumulate excessive concentrations of sodium and chloride ions in their leaves. In this paper, we describe how silicon decreases transpirational bypass flow and ion concentrations in the xylem sap in rice (Oryza sativa L.) seedlings growing under NaCl stress. Salt (50 mM NaCl) reduced the growth of shoots and roots: adding silicate (3 mM) to the saline culture solution improved the growth of the shoots, but not roots. The improvement of shoot growth in the presence of silicate was correlated with reduced sodium concentration in the shoot. The net transport rate of Na from the root to shoot (expressed per unit of root mass) was also decreased by added silicate. There was, however, no effect of silicate on the net transport of potassium. Furthermore, in salt-stressed plants, silicate did not decrease the transpiration, and even increased it in seedlings pre-treated with silicate for 7 d prior to salt treatment, indicating that the reduction of sodium uptake by silicate was not simply through a reduction in volume flow from root to shoot. Experiments using trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS), an apoplastic tracer, showed that silicate dramatically decreased transpirational bypass flow in rice (from about 4.2 to 0.8%), while the apparent sodium concentration in the xylem, which was estimated indirectly from the flux data, decreased from 6.2 to 2.8 mM. Direct measurements of the concentration of sodium in xylem sap sampled using Philaenus spumarius confirmed that the apparent reduction was not a consequence of sodium recycling. X-ray microanalysis showed that silicon was deposited in the outer part of the root and in the endodermis, being more obvious in the latter than in the former. The results suggest that silicon deposition in the exodermis and endodermis reduced sodium uptake in rice (Oryza sativa L.) seedlings under NaCl stress through a reduction in apoplastic transport across the root.  相似文献   

5.
The present study investigates the role of salicylic acid (SA) in inducing plant tolerance to salinity. The application of 0.1 mM SA to tomato [Lycopersicon esculentum Mill.] plants via root drenching provided protection against 150 mM or 200 mM NaCl stress. SA treated plants had greater survival and relative shoot growth rate compared to untreated plants when exposed to salt stress. At 200 mM salt, shoot growth rates were approximately 4 times higher in SA treated plants than untreated plants. Application of SA increased photosynthetic rates in salt stressed plants and may have contributed to the enhanced survival. Transpiration rates and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced electrolyte leakage by 44% in 150 mM NaCl and 32% in 200 mM NaCl, compared to untreated plants, indicating possible protection of integrity of the cellular membrane. Beneficial effects of SA in saline conditions include sustaining the photosynthetic/transpiration activity and consequently growth, and may have contributed to the reduction or total avoidance of necrosis. SA, when used in appropriate concentrations, alleviates salinity stress without compromising the plants ability for growth under a favourable environment.  相似文献   

6.
岳小红  曹靖  耿杰  李瑾  张宗菊  张琳捷 《生态学报》2018,38(20):7373-7380
盐分胁迫不仅影响植物的生长,而且会影响植物根际微域环境。根际pH的改变对土壤养分的有效性和微生物群落组成的变化有重要影响。为了探究啤酒大麦幼苗对不同类型盐分胁迫的生理生态响应机制和根际pH变化影响的生理机制,采用水培法,通过不同类型盐分(对照、混合Na盐、混合Cl盐和NaCl)胁迫处理啤酒大麦幼苗,对其生长、离子平衡和根际pH变化进行了研究。结果表明,1)在3种不同类型盐分胁迫下,啤酒大麦幼苗地上部干重、含水量均有所降低,而根冠比增加,尤其在NaCl胁迫下啤酒大麦幼苗地上部干重较对照显著降低了17.88%,而根干重和根冠比则分别增加了19.12%和43.86%。不同类型盐分胁迫抑制了啤酒大麦幼苗根长的生长,尤其在混合Na盐胁迫下根长降低明显(P0.05),但促进了根表面积和根体积的增加,尤其在混合Cl盐胁迫下,根表面积和根体积分别增加了41.76%和84.38%。2)不同类型盐分胁迫下啤酒大麦幼苗地上部离子平衡发生改变,在混合Na盐和NaCl胁迫下啤酒大麦幼苗主要吸收Na~+,地上部K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+显著降低;混合Cl盐和NaCl胁迫下则过量吸收Cl~-,抑制了H_2PO_4~-、NO_3~-和SO_4~(2-)的吸收。3)在混合Na盐、混合Cl盐和NaCl盐分胁迫下,啤酒大麦幼苗对阴离子的吸收总量高于对阳离子的吸收总量,离子平衡计算结果表明根际呈碱化现象,与原位显色结果一致,且在混合Cl盐胁迫下根际碱化程度最大。  相似文献   

7.
8.
Gibberellic acid (GA3) is one of the plant growth regulators which improve salt tolerance and mitigate the salt stress impact on plants. The extant analysis was carried out to study the effect of GA3 and different salt concentrations on seed germination and physiological parameters of oat cultivars. Oats is substantially less tolerant to salt than wheat and barley. Experimentation was conducted as factorial with Completely Randomized Block Design with three replicates. Different concentration of NaCl salt ((25, 50, 75 and 100 mM) were used in test control group and 100 and 150 ppm of GA3 were used in two group by pre-treated (after 24 h of the seed soaking) and plants were analyzed on 15th day. Results indicate that increasing salinity would decrease the germination percentage and growth parameter in three oat cultivars. Quotes data indicating a 13%, 19.9% and 32.48% in cultivars NDO-2, UPO-212 and UPO-94 germination reduction when soil salinity reaches 50 mM. A 36.02%, 47.33% and 56.365 reduction in germination is likely when soil salinity reaches 100 mM respectively same cultivars. Seeds treated with GA3 significantly promoted the percentage of germination, shoot and root length, total fresh and dry weight of seedling, tissue water content and seedling vigor index by NDO-2 and UPO-212 under different saline concentration. The maximum average of germination and growth parameters were observed from 150 ppm GA3 treated seeds. But this concentration was significantly inhibited root length in sensitive cultivar UPO-94 at 75 and 100 mM salt as compared to 100 ppm. We observed that, the high concentration of GA3 was not suitable for sensitive oat cultivars. Because the plant root are the real workforce behind any plants success. Thus, it may be concluding that, GA3 treatment could curtail the toxic effect of salinity by increasing germination percentage and shoot and root length, total fresh and dry weight, tissue water content and seedling vigor index in tolerant cultivar.  相似文献   

9.
转HAL1基因番茄的耐盐性   总被引:18,自引:0,他引:18  
利用农杆菌介导的叶盘法,把HAL1 基因转入番茄,Southern杂交检测得到转基因植株.耐盐实验表明, T1代转基因番茄在150 mmol/L的NaCl胁迫下仍有43%的发芽率,200 mmol/L的NaCl胁迫下发芽率为6%,而对照种子在100和150 mmol/L的NaCl胁迫下发芽率分别为11.0%和0.转基因番茄的电解质相对外渗率小于对照,而根冠比和叶绿素含量大于对照,转HAL1基因显著提高了番茄的耐盐性.盐胁迫下Na 、K 的累积状况表明,转基因番茄根、茎、叶的K /Na 均有所提高,根系的SK/Na增大,茎、叶的RSK/Na和RLK/Na减小,说明根系对K /Na 离子的选择吸收和运输能力加强.不但选择吸收K /Na ,而且表现出整株水平上的有利于耐盐的K /Na 区域化分配.  相似文献   

10.
Common centaury (Centaurium erythraea Rafn.) is a plant species that can inhabit saline soils. It is known as a plant with high spontaneous regeneration potential in vitro. In the present work we evaluated shoots and roots salinity tolerance of non-transformed and three AtCKX transgenic centaury lines to graded NaCl concentrations (0, 50, 100, 150, 200 mM) in vitro. Overexpression of AtCKX genes in transgenic centaury plants resulted in an altered cytokinins (CKs) profile leading to a decline of bioactive CK levels and, at the same time, increased contents of storage CK forms, inactive CK forms and/or CK nucleotides. Significant increment of fresh shoot weight was obtained in shoots of non-transformed and AtCKX1 transgenic line only on medium supplemented with 50 mM NaCl. However two analysed AtCKX2 transgenic lines reduced shoot growth at all NaCl concentrations. In general, centaury roots showed higher tolerance to salinity than shoots. Non-transformed and AtCKX1 transgenic lines tolerated up to 100 mM NaCl without change in frequency of regeneration and number of regenerated plants. Roots of two analysed AtCKX2 transgenic lines showed different regeneration potential under salt stress. Regeneration of transgenic AtCKX2-26 shoots even at 200 mM NaCl was recorded. Salinity stress response of centaury shoots and roots was also evaluated at biochemical level. Free proline, malondialdehyde and hydrogen peroxide content as well as antioxidative enzymes activities were investigated in shoots and roots after 1, 2, 4 and 8 weeks. In general, adition of NaCl in culture medium elevated all biochemical parameters in centaury shoots and in roots. Considering that all analysed AtCKX transgenic centaury lines showed altered salt tolerance to graded NaCl concentrations in vitro it can be assumed that CKs might be involved in plant defence to salt stress conditions.  相似文献   

11.
Functional analysis of water channels in barley roots   总被引:1,自引:0,他引:1  
  相似文献   

12.
植物质膜水通道蛋白(plasma membrane intrinsic proteins,PIPs)是位于细胞质膜上具有选择性、高效转运水分的一类膜内在蛋白,参与植物生长发育的多个生理活动。本研究以大麦‘Haruna—nijo’为材料,对水培幼苗进行4℃冷胁迫,采用实时荧光定量PCR技术对胁迫期(4℃,48h)和温度恢复期(16℃,48h)两个过程的水通道蛋白PIPSs基因表达进行了分析;同期测定了根水导度(Lpr)、根长和苗高,分析冷胁迫下大麦根mF基因的表达与水分生理的关系。结果表明:大麦幼苗经4℃低温胁迫48h后,苗的生长明显受抑,根的生长无显著变化;温度恢复48h后,苗恢复生长,根的生长无显著变化;根水导度在胁迫期下降,恢复期急剧升高,均无显著差异。实时荧光定量PCR结果显示,根中表达量最高的是HvPIP1;2和HvPIP1;3,最低的是HvPIP1;1和HvPIP2;3;冷处理后HvPIPs表达童与对照比较总体百降,其HvPIP1;2、HvPIP1;3、HvPIP1;4、HvPIP1;5、HvPIP2;1、HvPIP2;2明显下调。恢复后大多数HvPIPS表达童增加.HvPIP1;1、HvPIP1;2、HvPIP1;5、HvPIP2;3显砉增如,HvPIP1;4、mPIP2;5表达量降低,但无显著轰异,研菀发现,冷弼迫后夫菱粮HvPIPs的表达情况总体下调,恢复生长大部分HvPIPs上调,结合根水导度的变化,推测大麦HvPIPs在抗冷反应中的作用复杂,冷害的不同阶段HvPIPs对水分吸收所起的作用不同。  相似文献   

13.
Bacterial mannitol 1-phosphate dehydrogenase (mtlD) gene was introduced into potato (Solanum tuberosum L.) by Agrobacterium tumefaciens-mediated transformation. Transgenic plants were selected on a medium containing 100 mg l−1 kanamycin and confirmed by polymerase chain reaction (PCR), Southern blotting, and RT-PCR analyses. All of the selected transformants accumulated mannitol, a sugar alcohol that is not found in wildtype potato. Experiments designed for testing salt tolerance revealed that there was enhanced NaCl tolerance of the transgenic lines both in vitro and in hydroponic culture. Compared to 0 mM NaCl, the shoot fresh weight of wildtype plants was reduced by 76.5% at 100 mM NaCl under hydroponic conditions. However, under the same condition, the shoot fresh weight of transgenic plants was reduced only by 17.3%, compared to 0 mM NaCl treatment. The improved tolerance of this transgenic line may be attributed to the induction and progressive accumulation of mannitol in the roots and shoots of the plants. In contrast to in vitro experiments, the mannitol content in the transgenic roots and shoots increased at 50 mM NaCl and decreased slightly at 75 and 100 mM NaCl, respectively. Overall, the amount of accumulated mannitol in the transgenic lines was too small to act as an osmolyte; thus, it might act as an osmoprotectant. However, the results demonstrated that mannitol had more contribution to osmotic adjustment in the roots (but not in shoots). Finally, we concluded that mtlD expression in transgenic potato plants can significantly increase the mannitol accumulation that contributes to the enhanced tolerance to NaCl stress. Furthermore, although this enhanced tolerance resulted mainly from an osmoprotectant action, an osmoregulatory effect could not be ruled out.  相似文献   

14.
15.
16.
17.
Rice is an important crop that is very sensitive to salinity. However, some varieties differ greatly in this feature, making investigations of salinity tolerance mechanisms possible. The cultivar Pokkali is salinity tolerant and is known to have more extensive hydrophobic barriers in its roots than does IR20, a more sensitive cultivar. These barriers located in the root endodermis and exodermis prevent the direct entry of external fluid into the stele. However, it is known that in the case of rice, these barriers are bypassed by most of the Na(+) that enters the shoot. Exposing plants to a moderate stress of 100 mM NaCl resulted in deposition of additional hydrophobic aliphatic suberin in both cultivars. The present study demonstrated that Pokkali roots have a lower permeability to water (measured using a pressure chamber) than those of IR20. Conditioning plants with 100 mM NaCl effectively reduced Na(+) accumulation in the shoot and improved survival of the plants when they were subsequently subjected to a lethal stress of 200 mM NaCl. The Na(+) accumulated during the conditioning period was rapidly released when the plants were returned to the control medium. It has been suggested that the location of the bypass flow is around young lateral roots, the early development of which disrupts the continuity of the endodermal and exodermal Casparian bands. However, in the present study, the observed increase in lateral root densities during stress in both cultivars did not correlate with bypass flow. Overall the data suggest that in rice roots Na(+) bypass flow is reduced by the deposition of apoplastic barriers, leading to improved plant survival under salt stress.  相似文献   

18.
Rice (Oryza sativa) is sensitive to salt stresses and cannot survive under low salt conditions, such as 50 mM NaCl. In an attempt to improve salt tolerance of rice, we introduced katE, a catalase gene of Escherichia coli, into japonica rice cultivar, Nipponbare. The resultant transgenic rice plants constitutively expressing katE were able to grow for more than 14 days in the presence of 250 mM NaCl, and were able to form flower and produce seeds in the presence of 100 mM NaCl. Catalase activity in the transgenic rice plants was 1.5- to 2.5-fold higher than non-transgenic rice plants. Our results clearly indicate that simple genetic modification of rice to express E. coli-derived catalase can efficiently increase its tolerance against salt stresses. The transformant presented here is one of the most salt-tolerant rice plants created by molecular breeding so far.  相似文献   

19.
Various environmental stresses induce reactive oxygen species (ROS), causing deleterious effects on plant cells. Glutathione (GSH), a critical antioxidant, is used to combat ROS. GSH is produced by γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the Oryza sativa L. Japonica cv. Ilmi ECS (OsECS) gene, we generated transgenic rice plants overexpressing OsECS under the control of an inducible promoter (Rab21). When grown under saline conditions (100 mM) for 4 weeks, 2-independent transgenic (TGR1 and TGR2) rice plants remained bright green in comparison to control wild-type (WT) rice plants. TGR1 and TGR2 rice plants also showed a higher GSH/GSSG ratio than did WT rice plants in the presence of 100 mM NaCl, which led to enhanced redox homeostasis. TGR1 and TGR2 rice plants also showed lower ion leakage and higher chlorophyll-fluorescence when exposed to 10 μM methyl viologen (MV). Furthermore, the TGR1 and TGR2 rice seeds had approximately 1.5-fold higher germination rates in the presence of 200 mM salt. Under paddy field conditions, OsECS-overexpression in transgenic rice plants increased rice grain yield (TGW) and improved biomass. Overall, our results show that OsECS overexpression in transgenic rice increases tolerance and germination rate in the presence of abiotic stress by improving redox homeostasis via an enhanced GSH pool. Our findings suggest that increases in grain yield by OsECS overexpression could improve crop yields under natural environmental conditions.  相似文献   

20.
A pot experiment was carried out to explore the role of glycinebetaine (GB) as foliar spray foliar on two pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd) under saline and non-saline conditions. Thirty-two-day-old plants were subjected to two levels 0 and 150 mM of NaCl stress. Salt treatment was applied in full strength Hoagland’s nutrient solution. Three levels 0, 5 and 10 mM of GB were applied as foliar treatment on 34-day-old pea plants. After 2 weeks of foliar treatment with GB data for various growth and physiochemical attributes were recorded. Rooting-medium applied salt (150 mM NaCl) stress decreased growth, photosynthesis, chlorophyll, chlorophyll fluorescence and soluble protein contents, while increasing the activities of enzymatic (POD and CAT) and non-enzymatic (ascorbic acid and total phenolics) antioxidant enzymes. Foliar application of GB decreased root and shoot Na+ under saline conditions, while increasing shoot dry matter, root length, root fresh weight, stomatal conductance (g s), contents of seed ascorbic acid, leaf phenolics, and root and shoot Ca2+ contents. Of three GB (0, 5, 10 mM) levels, 10 mM proved to be more effective in mitigating the adverse effects of salinity stress. Overall, variety Pea 09 showed better performance in comparison to those of var. Meteor Fsd under both normal and salinity stress conditions. GB-induced modulation of seed ascorbic acid, leaf phenolics, g s, and root Ca2+ values might have contributed to the increased plant biomass, reduction of oxidative stress, increased osmotic adjustment and better photosynthetic performance of pea plants under salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号