首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Upon stimulation with nerve growth factor (NGF), PC12 cells extend neurites and cease to proliferate by influencing cell cycle proteins. Previous studies have shown that neuritogenesis and a block at the G(1)/S checkpoint correlate with the nuclear translocation of and an increase in the p53 tumor suppressor protein. This study was designed to determine if p53 plays a direct role in mediating NGF-driven G(1) arrest. A retroviral vector that overexpresses a temperature-sensitive p53 mutant protein (p53ts) was used to extinguish the function of endogenous p53 in PC12 cells in a dominant-negative manner at the nonpermissive temperature. NGF treatment led to transactivation of a p53 response element in a luciferase reporter construct in PC12 cells, whereas this response to NGF was absent in PC12(p53ts) cells at the nonpermissive temperature. With p53 functionally inactivated, NGF failed to activate growth arrest, as measured by bromodeoxyuridine incorporation, and also failed to induce p21/WAF1 expression, as measured by Western blotting. Since neurite outgrowth proceeded unharmed, 50% of the cells simultaneously demonstrated neurite morphology and were in S phase. Both PC12 cells expressing SV40 T antigen and PC12 cells treated with p53 antisense oligonucleotides continued through the cell cycle, confirming the dependence of the NGF growth arrest signal on a p53 pathway. Activation of Ras in a dexamethasone-inducible PC12 cell line (GSRas1) also caused p53 nuclear translocation and growth arrest. Therefore, wild-type p53 is indispensable in mediating the NGF antiproliferative signal through the Ras/MAPK pathway that regulates the cell cycle of PC12 cells.  相似文献   

3.
Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.  相似文献   

4.
5.
6.
MAP kinases have important role in PC12 cell differentiation, since the activities of both extracellular regulated protein kinase (ERK) and p38 have been indicated as necessary signal for PC12 cell differentiation. Epidermal growth factor (EGF) and NGF both activate ERK and p38 in PC12 cells, but only NGF trigger differentiation. It has been proposed that the duration of ERK activation determines the switch from proliferation to differentiation, since EGF causes more transient activation of ERK than NGF in PC12 cells. Here we report that treatment of PC12 cells with EGF in the presence of SB203580, a widely used p38 inhibitor, caused differentiation. The pro-differentiation effect of SB203580 in EGF-treated PC12 cells was found to be independent of its function of p38 inhibition but was through an effect on the ERK pathway that has been recently reported (Kalmes et al. [1999] FEBS Lett. 444: 71-74; Hall-Jackson et al. [1999] Onc. 18: 2047-2054). We found that SB203580 by itself did not affect the activity of ERK1/2 but significantly extended EGF-induced ERK activation in PC12 cells, which resulted in early morphological differentiation. Our data indicated that although both ERK and p38 are required for PC12 cell differentiation, activation of p38 is not required when ERK is superactivated. Our data provided further evidence for the threshold theory that differentiation is determined by the duration of ERK activation.  相似文献   

7.
Thrombopoietin (TPO), a hematopoietic growth factor regulating platelet production, and its receptor (TPOR) were recently shown to be expressed in the brain where they exert proapoptotic activity. Here we used PC12 cells, an established model of neuronal differentiation, to investigate the effects of TPO on neuronal survival and differentiation. These cells expressed TPOR mRNA. TPO increased cell death in neuronally differentiated PC12 cells but had no effect in undifferentiated cells. Surprisingly, TPO inhibited nerve growth factor (NGF)-induced differentiation of PC12 cells in a dose- and time-dependent manner. This inhibition was dependent on the activity of Janus kinase-2 (JAK2). Using phospho-kinase arrays and Western blot we found downregulation of the NGF-stimulated phosphorylation of the extracellular signal-regulated kinase p42ERK by TPO with no effect on phosphorylation of Akt or stress kinases. NGF-induced phosphorylation of ERK-activating kinases, MEK1/2 and C-RAF was also reduced by TPO while NGF-induced RAS activation was not attenuated by TPO treatment. In contrast to its inhibitory effects on NGF signalling, TPO had no effect on epidermal growth factor (EGF)-stimulated ERK phosphorylation or proliferation of PC12 cells. Our data indicate that TPO via activation of its receptor-bound JAK2 delays the NGF-dependent acquisition of neuronal phenotype and decreases neuronal survival by suppressing NGF-induced ERK activity.  相似文献   

8.
c-Jun N-terminal kinases (JNKs) are the exclusive downstream substrates of mitogen-activated protein kinase kinase 7 (MKK7). Recently, we have shown that a single MKK7 splice variant, MKK7γ1, substantially changes the functions of JNKs in naïve PC12 cells. Here we provide evidence that MKK7γ1 blocks NGF-mediated differentiation and sustains proliferation by interfering with the NGF-triggered differentiation programme at several levels: (i) down-regulation of the NGF receptors TrkA and p75; (ii) attenuation of the differentiation-promoting pathways ERK1/2 and AKT; (iii) increase of JNK1 and JNK2, especially the JNK2 54 kDa splice variants; (iv) repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1, which normally supports NGF-mediated cell cycle arrest; (v) strong induction of the cell cycle promoter CyclinD1, and (vi) profound changes of p53 functions. Moreover, MKK7γ1 substantially changes the responsiveness to stress. Whereas NGF differentiation protects PC12 cells against taxol-induced apoptosis, MKK7γ1 triggers an escape from cell cycle arrest and renders transfected cells sensitive to taxol-induced death. This stress response completely differs from naïve PC12 cells, where MKK7γ1 protects against taxol-induced cell death. These novel aspects on the regulation of JNK signalling emphasise the importance of MKK7γ1 in its ability to reverse basic cellular programmes by simply using JNKs as effectors. Furthermore, our results highlight the necessity for the cells to balance the expression of JNK activators to ensure precise intracellular processes.  相似文献   

9.
10.
11.
12.
A screening for intracellular interactors of the p75 neurotrophin receptor (p75NTR) identified brain-expressed X-linked 1 (Bex1), a small adaptor-like protein of unknown function. Bex1 levels oscillated during the cell cycle, and preventing the normal cycling and downregulation of Bex1 in PC12 cells sustained cell proliferation under conditions of growth arrest, and inhibited neuronal differentiation in response to nerve growth factor (NGF). Neuronal differentiation of precursors isolated from the brain subventricular zone was also reduced by ectopic Bex1. In PC12 cells, Bex1 overexpression inhibited the induction of NF-kappaB activity by NGF without affecting activation of Erk1/2 and AKT, while Bex1 knockdown accelerated neuronal differentiation and potentiated NF-kappaB activity in response to NGF. Bex1 competed with RIP2 for binding to the p75NTR intracellular domain, and elevating RIP2 levels restored the ability of cells overexpressing Bex1 to differentiate in response to NGF. Together, these data establish Bex1 as a novel link between neurotrophin signaling, the cell cycle, and neuronal differentiation, and suggest that Bex1 may function by coordinating internal cellular states with the ability of cells to respond to external signals.  相似文献   

13.
Rat pheochromocytoma 12 (PC12) cells undergo neuronal differentiation in response to nerve growth factor (NGF). NGF-induced differentiation involves a number of protein kinases, including extracellular signal-regulated kinase (ERK). We studied the effect of iron on neuronal differentiation, using as model the neurite outgrowth of PC12 cells triggered by NGF when the cells are plated on collagen-coated dishes in medium containing 1% serum. The addition of iron enhanced NGF-mediated cell adhesion, spreading and neurite outgrowth. The differentiation-promoting effect of iron seems to depend on intracellular iron, since nitrilotriacetic acid (an efficient iron-uptake mediator) enhanced the response to iron. In agreement with this, intracellular, but not extracellular, iron enhanced NGF-induced neurite outgrowth in pre-spread PC12 cells, and this was correlated with increased ERK activity. Taken together, these data suggest that intracellular iron promotes NGF-stimulated differentiation of PC12 cells by increasing ERK activity.  相似文献   

14.
p53 is necessary for the elimination of neural cells inappropriately differentiated or in response to stimuli. However, the role of p53 in neuronal differentiation is not certain. Here, we showed that nerve growth factor (NGF)-mediated differentiation in PC12 cells is enhanced by overexpression of wild-type p53 but inhibited by mutant p53 or knockdown of endogenous wild-type p53, the latter of which can be rescued by expression of exogenous wild-type p53. Interestingly, p53 knockdown or overexpression of mutant p53 attenuates NGF-mediated activation of TrkA, the high-affinity receptor for NGF and a tyrosine kinase, and activation of the mitogen-activated protein kinase pathway. In addition, p53 knockdown reduces the constitutive levels of TrkA, which renders PC12 cells inert to NGF. And finally, we showed that both constitutive and stimuli-induced expressions of TrkA are regulated by p53 and that induction of TrkA by activated endogenous p53 enhances NGF-mediated differentiation. Taken together, our data demonstrate that p53 plays a critical role in NGF-mediated neuronal differentiation in PC12 cells at least in part via regulation of TrkA levels.  相似文献   

15.
16.
Yung LY  Tso PH  Wu EH  Yu JC  Ip NY  Wong YH 《Cellular signalling》2008,20(8):1538-1544
Differentiation of PC12 cells by nerve growth factor (NGF) requires the activation of various mitogen-activated protein kinases (MAPKs) including p38 MAPK. Accumulating evidence has suggested cross-talk regulation of NGF-induced responses by G protein-coupled receptors, thus we examined whether NGF utilizes G(i/o) proteins to regulate p38 MAPK in PC12 cells. Induction of p38 MAPK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX). NGF-dependent p38 MAPK phosphorylation became insensitive to PTX treatment upon transient expressions of Galpha(z) or the PTX-resistant mutants of Galpha(i2) and Galpha(oA). Moreover, Galpha(i2) was co-immunoprecipitated with the TrkA receptor from PC12 cell lysates. To discern the participation of various signaling intermediates, PC12 cells were treated with a panel of specific inhibitors prior to the NGF challenge. NGF-induced p38 MAPK phosphorylation was abolished by inhibitors of Src (PP1, PP2, and SU6656) and MEK1/2 (U0126). Inhibition of the p38 MAPK pathway also suppressed NGF-induced PC12 cell differentiation. In contrast, inhibitors of JAK2, phospholipase C, protein kinase C and Ca(2+)/calmodulin-dependent kinase II did not affect the ability of NGF to activate p38 MAPK. Collectively, these studies indicate that NGF-dependent p38 MAPK activity may be mediated via G(i2) protein, Src, and the MEK/ERK cascade.  相似文献   

17.
18.
19.
A rat pheochromocytoma (PC12) cell line (designated MMTV-M17-5) expressing a dominant inhibitory mutant Ha-ras (Ha-ras Asn 17) protein was used to study nerve growth factor (NGF) induced neurite regeneration. Expression of the mutant p21 completely blocked NGF stimulated process formation in these cells. In contrast, neurite outgrowth induced by NGF treatment of primed MMTV-M17-5 cells was not significantly affected by the presence of Ha-ras Asn 17 protein. These observations suggest that, while ras function is required for NGF induced neuronal differentiation of PC12 cells, it is not needed to mediate NGF stimulated neurite regeneration.  相似文献   

20.
Dividing neuroendocrine cells differentiate into a neuronal-like phenotype in response to ligands activating G protein-coupled receptors, leading to the elevation of the second messenger cAMP. Growth factors that act at receptor tyrosine kinases, such as nerve growth factor, also cause differentiation. We report here that two aspects of cAMP-induced differentiation, neurite extension and growth arrest, are dissociable at the level of the sensors conveying the cAMP signal in PC12 and NS-1 cells. Following cAMP elevation, neuritogenic cyclic AMP sensor/Rapgef2 is activated for signaling to ERK to mediate neuritogenesis, whereas Epac2 is activated for signaling to the MAP kinase p38 to mediate growth arrest. Neither action of cAMP requires transactivation of TrkA, the receptor for NGF. In fact, the differentiating effects of NGF do not require activation of any of the cAMP sensors protein kinase A, Epac, or neuritogenic cyclic AMP sensor/Rapgef2 but, rather, depend on ERK and p38 activation via completely independent signaling pathways. Hence, cAMP- and NGF-dependent signaling for differentiation are also completely insulated from each other. Cyclic AMP and NGF also protect NS-1 cells from serum withdrawal-induced cell death, again by two wholly separate signaling mechanisms, PKA-dependent for cAMP and PKA-independent for NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号