首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Segregation in Escherichia coli, the process of separating the replicated chromosomes into daughter progeny cells, seems to start long before the duplication of the genome reaches completion. Soon after initiation in mid-cell region, the daughter oriCs rapidly move apart to fixed positions inside the cell (quarter length positions from each pole) and are anchored there by yet unknown mechanism(s). As replication proceeds, the rest of the chromosome is sequentially unwound and then refolded. At termination, the two sister chromosomes are unlinked by decatenation and separated by supercoiling and/or condensation. Muk and Seq proteins are involved in different stages of this replication-cum-partition process and thus can be categorized as important partition proteins along with topoisomerases. E. coli strains, lacking mukB or seqA functions, are defective in segregation and cell division. The nucleoids in these mutant strains exhibit altered condensation and superhelicity as can be demonstrated by sedimentation analysis and by fluorescence microscopy. As the supercoiling of an extrachromosomal element (a plasmid DNA) was also influenced by the mukB and seqA mutations we concluded that the MukB and SeqA proteins are possibly involved in maintaining the general supercoiling activity in the cell. The segregation of E. coli chromosome might therefore be predominantly driven by factors that operate by affecting the superhelicity and condensation of the nucleoid (MukB, SeqA, topoisomerases and additional unknown proteins). A picture thus emerges in which replication and partition are no longer compartmentalized into separable stages with clear gaps (S and M phases in eukaryotes) but are parallel processes that proceed concomitantly through a cell cycle continuum.  相似文献   

2.
We present a cryo-electron tomographic analysis of the three-dimensional architecture of a strain of the Gram-negative bacterium Bdellovibrio bacteriovorus in which endogenous MreB2 was replaced with monomeric teal fluorescent protein (mTFP)-labeled MreB2. In contrast to wild-type Bdellovibrio cells that predominantly displayed a compact nucleoid region, cells expressing mTFP-labeled MreB2 displayed a twisted spiral organization of the nucleoid. The more open structure of the MreB2-mTFP nucleoids enabled clear in situ visualization of ribosomes decorating the periphery of the nucleoid. Ribosomes also bordered the edges of more compact nucleoids from both wild-type cells and mutant cells. Surprisingly, MreB2-mTFP localized to the interface between the spiral nucleoid and the cytoplasm, suggesting an intimate connection between nucleoid architecture and MreB arrangement. Further, in contrast to wild-type cells, where a single tight chemoreceptor cluster localizes close to the single polar flagellum, MreB2-mTFP cells often displayed extended chemoreceptor arrays present at one or both poles and displayed multiple or inaccurately positioned flagella. Our findings provide direct structural evidence for spiral organization of the bacterial nucleoid and suggest a possible role for MreB in regulation of nucleoid architecture and localization of the chemotaxis apparatus.  相似文献   

3.
4.
T R Steck  K Drlica 《Cell》1984,36(4):1081-1088
Nucleoids isolated from a temperature-sensitive gyrB mutant of E. coli, incubated at restrictive temperatures, exhibit increased sedimentation rates and an abnormal doublet or dumbbell-shaped morphology. Shifting cells from restrictive to permissive temperature prior to nucleoid isolation leads to decreases in the percentage of doublet nucleoids and in nucleoid sedimentation rates. When nucleoids isolated from mutant cells exposed to restrictive temperature are incubated with purified gyrase, the percentage of doublet nucleoids decreases as the total number of nucleoids increases. These results, together with the demonstrated ability of gyrase to decatenate small circular DNA molecules in vitro, suggest that gyrase participates in bacterial chromosome segregation through its decatenating activity.  相似文献   

5.
Heat damage to the chromosome of Escherichia coli K-12.   总被引:2,自引:2,他引:0       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after in vivo heat treatment. Heat treatment of cultures at 50 degree C for 15, 30, and 60 min resulted in in vivo association of the nucleoids with cellular protein. Structural changes, determined by the increase in speed dependence of the nucleoids from heated cells, also occurred. These changes were most likely due to the unfolding of the typical compact nucleoid structure. The nucleoids from heated cells also had notably higher sedimentation coefficients (3,000 to 4,500S) than nucleoids from control cells (1,800S). These nucleoids did not contain greater than normal amounts of membrane phospholipids or ribonucleic acid. We propose that the protein associated with the nucleoids from heated cells causes the observed sedimentation coefficient increases.  相似文献   

6.
We present evidence that biological properties of cell membranes are altered in dnaA and seqA mutants of Escherichia coli relative to wild-type bacteria. We found that bacteriophage lambda forms extremely large plaques on the dnaA seqA double mutants. On the single mutants, dnaA and seqA, the plaques are also bigger than those formed on the wild-type host. However, no significant differences in intracellular phage lambda development were observed between wild-type and mutant hosts, indicating that differences in burst size do not account for the observed differences in plaque size. On the other hand, more efficient release of the phage lytic proteins and/or higher sensitivity of the cell membranes to these proteins may result in more efficient cell lysis. We found that the efficiency of adsorption of bacteriophage lambda to the dnaA seqA mutant cells is decreased at 0 degrees C , but not at 30 degrees C, relative to the wild-type strain. A considerable increase in the permeability of membranes of the mutant cells for beta-galactosidase is demonstrated. The dnaA and seqA mutants are more sensitive to ethanol (an organic solvent) than wild-type bacteria, and the seqA strain and the double mutant dnaA seqA are very sensitive to deoxycholate (a detergent). We conclude that lesions in the genes dnaA and seqA result in alterations in cell membranes, such that the permeability and possibly also other properties of the membranes are significantly altered relative to wild-type bacteria.  相似文献   

7.
SeqA and Dam proteins were known to be responsible for regulating the initiation of replication and to affect the expression of many genes and metabolisms. We have examined here the fatty acids composition and phospholipids membrane in dam and/or seqA mutants. The dam mutant showed an accumulation of the acidic phospholipids cardiolipin, whereas, the seqA mutant showed a higher proportion of phosphatidylglycerol compared with the wild-type strain. The seqA dam double mutant showed an intermediate proportion of acidic phospholipids compared with the wild-type strain. Based on these observations, we discuss the role of Dam and SeqA proteins in the regulation of phospholipids synthesis.  相似文献   

8.
Dam methylase mutants were recovered in a screen for mutants sensitive to UV irradiation or mild inhibition of replication elongation. Dam's role in tolerance of DNA damage is to provide binding sites for SeqA, because seqA mutants showed similar sensitivity that was genetically epistatic to dam. The sensitivity of seqA mutants to UV irradiation and to the replication inhibitors hydroxyurea (HU) and azidothymidine (AZT) was suppressed by alleles of dnaA that reduce the efficiency of replication initiation. These results suggest that for survival of replication fork damage, SeqA's repression of replication initiation is more important than its effects on nucleoid organization. Convergence of forks upon DNA damage is a likely explanation for seqA mutant sensitivity, because its poor survival of UV was suppressed by reducing secondary initiation through minimal medium growth. Surprisingly, growth in minimal medium reduced the ability of seqA+ strains to form colonies in the presence of low levels of AZT. Double dnaA seqA mutants exhibited plating efficiencies much superior to wild-type strains during chronic low-level AZT exposure in minimal medium. This suggests that mild inhibition of replication fork progression may actively restrain initiation such that seqA+ strains fail to recover initiation capacity after sustained conditions of replication arrest.  相似文献   

9.
H Niki  A Jaff  R Imamura  T Ogura    S Hiraga 《The EMBO journal》1991,10(1):183-193
An Escherichia coli temperature sensitive mutant which produces spontaneously normal size anucleate cells at low temperature was isolated. The mutant is defective in a previously undescribed gene, named mukB, located at 21 min on the chromosome. The mukB gene codes for a large protein (approximately 180 kd). A 1534 amino acid protein (176,826 daltons) was deduced from the nucleotide sequence of the mukB gene. Computer analysis revealed that the predicted MukB protein has distinct domains: an amino-terminal globular domain containing a nucleotide binding sequence, a central region containing two alpha-helical coiled-coil domains and one globular domain, and a carboxyl-terminal globular domain which is rich in Cys, Arg and Lys. A 180 kd protein detected in wild-type cell extracts by electrophoresis is absent in mukB null mutants. Although the null mutants are not lethal at low temperature, the absence of MukB leads to aberrant chromosome partitioning. At high temperature the mukB null mutants cannot form colonies and many nucleoids are distributed irregularly along elongated cells. We conclude that the MukB protein is required for chromosome partitioning in E. coli.  相似文献   

10.
The FtsZ ring assembles between segregated daughter chromosomes in prokaryotic cells and is essential for cell division. To understand better how the FtsZ ring is influenced by chromosome positioning and structure in Escherichia coli , we investigated its localization in parC and mukB mutants that are defective for chromosome segregation. Cells of both mutants at non-permissive temperatures were either filamentous with unsegregated nucleoids or short and anucleate. In parC filaments, FtsZ rings tended to localize only to either side of the central unsegregated nucleoid and rarely to the cell midpoint; however, medial rings reappeared soon after switching back to the permissive temperature. Filamentous mukB cells were usually longer and lacked many potential rings. At temperatures permissive for mukB viability, medial FtsZ rings assembled despite the presence of apparently unsegregated nucleoids. However, a significant proportion of these FtsZ rings were mislocalized or structurally abnormal. The most surprising result of this study was revealed upon further examination of FtsZ ring positioning in anucleate cells generated by the parC and mukB mutants: many of these cells, despite having no chromosome, possessed FtsZ rings at their midpoints. This discovery strongly suggests that the chromosome itself is not required for the proper positioning and development of the medial division site.  相似文献   

11.
The mukB gene is essential for the partitioning of sister chromosomes in Escherichia coli. A mukB null mutant is hypersensitive to the DNA gyrase inhibitor novobiocin. In this work, we isolated mutants suppressing the novobiocin hypersensitivity of the mukB null mutation. All suppressor mutations are localized in or near the gyrB gene, and the four tested clones have an amino acid substitution in the DNA gyrase beta subunit. We found that in the mukB mutant, the process of sister chromosome segregation is strikingly hypersensitive to novobiocin; however, the effect of novobiocin on growth, which was measured by culture turbidity, is the same as that of the wild-type strain.  相似文献   

12.
Escherichia coli mukF, mukE, and mukB null mutants have common phenotypes such as temperature-dependent colony formation, anucleate cell production, chromosome cutting by septum closure, and abnormal localization of SeqA-DNA clusters. We show here that the associated muk null mutations cause hypersensitivity to novobiocin. Null mutation of either dam or seqA suppressed partially the temperature-sensitive lethality but failed to suppress the anucleate cell production and the hypersensitivity to novobiocin caused by muk null mutations.  相似文献   

13.
K. H. Hu  E. Liu  K. Dean  M. Gingras  W. DeGraff    N. J. Trun 《Genetics》1996,143(4):1521-1532
We isolated and characterized three genes, crcA, cspE and crcB, which when present in high copy confer camphor resistance on a cell and suppress mutations in the chromosomal partition gene mukB. Both phenotypes require the same genes. Unlike chromosomal camphor resistant mutants, high copy number crcA, cspE and crcB do not result in an increase in the ploidy of the cells. The cspE gene has been previously identified as a cold shock-like protein with homologues in all organisms tested. We also demonstrate that camphor causes the nucleoids to decondense in vivo and when the three genes are present in high copy, the chromosomes do not decondense. Our results implicate camphor and mukB mutations as interfering with chromosome condensation and high copy crcA, cspE and crcB as promoting or protecting chromosome folding.  相似文献   

14.
To understand further the role of the nucleoid and the min system in selection of the cell division site, we examined FtsZ localization in Escherichia coli cells lacking MinCDE and in parC mutants defective in chromosome segregation. More than one FtsZ ring was sometimes found in the gaps between nucleoids in min mutant filaments. These multiple FtsZ rings were more apparent in longer cells; double or triple rings were often found in the nucleoid-free gaps in ftsI min and ftsA min double mutant filaments. Introducing a parC mutation into the ftsA min double mutant allowed the nucleoid-free gaps to become significantly longer. These gaps often contained dramatic clusters of FtsZ rings. In contrast, filaments of the ftsA parC double mutant, which contained active MinCDE, assembled only one or two rings in most of the large nucleoid-free gaps. These results suggest that all positions along the cell length are competent for FtsZ ring assembly, not just sites at mid-cell or at the poles. Consistent with previous results, unsegregated nucleoids also correlated with a lack of FtsZ localization. A model is proposed in which both the inhibitory effect of the nucleoid and the regulation by MinCDE ensure that cells divide precisely at the midpoint.  相似文献   

15.
Mitomycin-C-induced changes in the nucleoid of Escherichia coli K12   总被引:1,自引:0,他引:1  
The influence of low concentrations of mitomycin-C on the structure of the envelope-free nucleoid was studied in several strains of Escherichia coli K12. The wild-type strain AB1157 uvr+ rec+ and 3 mitomycin-C-sensitive derivatives carrying mutations in the uvrA, uvrB and recA genes, were used. Treatment of the control strain with mitomycin-C, 0.5 microgram/ml, followed by incubation in drug-free medium resulted in the formation of a transient fast-sedimenting nucleoid with a sedimentation coefficient of 2200 S. A fraction of 25% of the nucleoids had attained the normal sedimentation coefficient of 1570 S 3 h after removal of mitomycin-C. With the uvr- strains, mitomycin-C induced a slow, almost linear increase in the S value of the envelope-free nucleoid. In these cases the S value continued to increase during post-incubation and was 2050 S 3 h after removal of the drug. Post-incubation of recA- cells resulted in loss of supercoiling, decrease in S value of the nucleoid and degradation of DNA. Results obtained with phase-contrast and electron microscopy were in good agreement with the hydrodynamic data.  相似文献   

16.
The reorganization of the bacterial nucleoid of an Escherichia coli mutant, MX74T2 ts52, was studied by electron microscopy after protein synthesis inhibition by using whole mounts of cell ghosts, ultrathin-sectioning, and freeze-etching. The bacterial nucleoid showed two morphological changes after chloramphenicol addition: deoxyribonucleic acid (DNA) localization and DNA condensation. DNA localization was observed 10 min after chloramphenicol addition; the DNA appeared as a compact, solid mass. DNA condensation was observed at 25 min; the nucleoid appeared as a cytoplasm-filled sphere, often opened at one end. Ribosomes were observed in the center. Giant nucleoids present in some mutant filaments showed fused, spherical nucleoids arranged linearly, suggesting that the tertiary structure of the nucleoid reflects the number of replicated genomes. Inhibitors which directly or indirectly blocked protein synthesis and caused DNA condensation were chloramphenicol, puromycin, amino acid starvation, rifampicin, or carbonyl cyanide m-chlorophenyl hydrazone. All inhibitors that caused cell division in the mutant also caused condensation, although some inhibitors caused condensation without cell division. Nucleoid condensation appears to be related to chromosome structure rather than to DNA segregation upon cell division.  相似文献   

17.
18.
SeqA limits DnaA activity in replication from oriC in Escherichia coli   总被引:5,自引:2,他引:3  
A mutant Escherichia coli that transforms minichromosomes with high efficiency in the absence of Dam methylation has been Isolated and the mutation mapped to 16.25 min on the E. coli map. The mutant strain containing seqA2 is defective for growth in rich medium but not in minimal medium. A similar mutation In this gene, named seqA1, has also been isolated. Here we show that the product of the seqA gene, SeqA, normally acts as an inhibitor of chromosomal initiation. In the seqA2-containing mutant, the frequency of initiation increases by a factor of three. Introduction of the wild-type seqA gene on a low-copy plasmid suppresses the cold sensitivity of a dnaAcos mutant known to overinitiate at temperatures below 39°C. In addition, the seqA2 mutation is a suppressor of several dnaA (Ts) alleles. The seqA2 mutant overinitiates replication from oriC and displays the asynchronous initiation phenotype. Also the seqA2 mutant has an elevated level of DnaA protein (twofold). The introduction of minichromosomes or a low-copy-number plasmid carrying five DnaA-boxes from the oriC region increases the growth rate of the seqA2 mutant in rich medium to the wild-type level, reduces overinitiation but does not restore synchrony. We propose that the role of SeqA is to limit the activity level of the E. coli regulator of chromosome initiation, DnaA.  相似文献   

19.
Repair of thermal damage to the Escherichia coli nucleoid.   总被引:4,自引:0,他引:4       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after heat treatment (30 min at 50 degrees C) and subsequent incubation of cells at 37 degrees C for various times. Heat treatment resulted in in vivo association of the nucleoids with cellular protein and in an increase in sedimentation coefficient. During incubation at 37 degrees C, a fraction of the nucleoids, from heated cells, because dissociated from cellular protein and regained their characteristic sedimentation coefficients. The percentage of nucleoids which returned to their control sedimentation position in the sucrose gradients corresponded to the percentage of cells able to repair thermal damage as assayed by enumeration on agar plates.  相似文献   

20.
Yu XC  Sun Q  Margolin W 《Biochimie》2001,83(1):125-129
The site of cell division in Escherichia coli is defined by formation of the Z ring between the two segregated daughter nucleoids. Positioning of the Z ring, composed of the highly conserved and tubulin-like FtsZ protein, appears to be negatively regulated by both the nucleoid and the oscillating MinCD inhibitor proteins. MukB protein is probably involved in nucleoid condensation, and in the absence of MukB, the negative effect of the nucleoid on Z rings appears to be partially suppressed. In this study, we examined the localization of Z rings in cells lacking both the Min system and MukB. In the Deltamin DeltamukB double null mutant, essentially all nucleoid-free zones, either at the cell poles or at non-polar sites between nucleoids, contained Z rings. However, a significant proportion of Z rings also formed on top of nucleoids. Interestingly, Z ring clusters often formed at gaps between nucleoids, and some of the rings within the clusters were clearly positioned on top of nucleoids. These results provide further evidence that the negative topological effect of nucleoids in cells lacking MukB is partially but not totally suppressed, and that the absence of the Min system allows more promiscuous Z ring formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号