首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Yang J  Xie Z  Glover BJ 《The New phytologist》2005,165(2):623-632
NF-Y is a ubiquitous CCAAT-binding factor composed of NF-YA, NF-YB and NF-YC. Multiple genes encoding NF-Y subunits have been identified in plant genomes. It remains unclear whether the duplicate genes underwent different evolutionary patterns. Likelihood-ratio tests were used to examine whether the amino acid substitution rates are the same between duplicate genes. The influences of selection on evolution were evaluated by comparing the conservative and radical amino acid substitution rates, as well as maximum-likelihood analysis. Some NF-YB and NF-YC duplicates showed significant evidence of asymmetric evolution but not the NF-YA duplicates. Most amino acid replacements in the NF-YB and NF-YC duplicates result in changes in hydropathy, polar requirement and polarity. The physicochemical changes in the sequences of NF-YB seem to be coupled to asymmetric divergence in gene function. Plant NF-Y genes have evolved in different patterns. Relaxed selective constraints following gene duplication are most likely responsible for the unequal evolutionary rates and distinct divergence patterns of duplicate NF-Y genes. Positive selection may have promoted amino acid hydropathy changes in the NF-YC duplicates.  相似文献   

6.
7.

Background and Aims

In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion.

Methods

At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants.

Key Results

At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots.

Conclusions

The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed.Key words: anti-herbivore defences, dicots, herbivory, leaf folding, leaf rolling, leaf toughness, monocots, palms, tropical rain forest  相似文献   

8.
9.
NF-Y is a trimeric CCAAT-binding factor with histone fold subunits (NF-YB/NF-YC) and bipartite activation domains located on NF-YA and NF-YC. We reconstituted the NF-Y activation potential in vivo with GAL4 DBD fusions. In the GAL4-YA configuration, activation requires co-expression of the three subunits; with GAL4-YB and GAL4-YC, transfections of the histone fold partners are sufficient, provided that the Q-rich domain of NF-YC is present. Combinations of mutants indicate that the Q-rich domains of NF-YA and NF-YC are redundant in the trimeric complex. Glutamines 101 and 102 of NF-YA are required for activity. We assayed NF-Y on different promoter targets, containing single or multiple GAL4 sites: whereas on a single site NF-Y is nearly as powerful as VP16, on multiple sites neither synergistic nor additive effects are observed. NF-Y activates TATA and Inr core elements and the overall potency is in the same range as other Q-rich and Pro-rich activation domains. These results represent the first in vivo evidence of subunit interactions studies and further support the hypothesis that NF-Y is a general promoter organizer rather than a brute activator.  相似文献   

10.
11.
12.
13.
14.
Cell cycle regulation of NF-YC nuclear localization   总被引:3,自引:0,他引:3  
NF-Y is a trimeric activator with histone fold, HFM, subunits that binds to the CCAAT-box and is required for a majority of cell cycle promoters, often in conjunction with E2Fs. In vivo binding of NF-Y is dynamic during the cell cycle and correlates with gene activation. We performed immunofluorescence studies on endogenous, GFP- and Flag-tagged overexpressed NF-Y subunits. NF-YA, NF-YB are nuclear proteins. Unexpectedly, NF-YC localizes both in cytoplamatic and nuclear compartments and its nuclear localization is determined by the interaction with its heterodimerization partner NF-YB. Most importantly, compartmentalization is regulated during the cell cycle of serum restimulated NIH3T3 cells, accumulating in the nucleus at the onset of S phase. These data point to the control of HFM heterodimerization as an important layer of NF-Y regulation during cell cycle progression.  相似文献   

15.
16.
17.
18.
19.
The evolutionary conserved CCAAT binding protein NF-Y is a common regulatory DNA binding protein consisting of three distinct subunits. Unlike yeast and mammals, in which only a single copy of each subunit is encoded,Arabidopsis encodes a multi-gene family for each subunit in its genome. Compared with the NF-Y of mammals or yeast, very little is known about plant NF-Y homologs. HereArabidopsis NF-YA subunits were isolated to determine whether they could form a hete-rotrimeric NF-Y complex with mammalian NF-YB and NF-YC. This resultant chimeric NF-Y complex had DNA binding ability to the same CCAAT sequences as those of the other life systems. Therefore, it is possible that plant NF-Y homologs might have biochemical characteristics similar to mammalian NF-Y, thereby suggesting its functional conservation among organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号