首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Penta-EF-hand (PEF) proteins comprise a family of Ca(2+)-binding proteins that have five repetitive EF-hand motifs. Among the eight alpha-helices (alpha1-alpha8), alpha4 and alpha7 link EF2-EF3 and EF4-EF5, respectively. In addition to the structural similarities in the EF-hand regions, the PEF protein family members have common features: (i) dimerization through unpaired C-terminal EF5s, (ii) possession of hydrophobic Gly/Pro-rich N-terminal domains, and (iii) Ca(2+)-dependent translocation to membranes. Based on comparison of amino acid sequences, mammalian PEF proteins are classified into two groups: Group I PEF proteins (ALG-2 and peflin) and Group II PEF proteins (Ca(2+)-dependent protease calpain subfamily members, sorcin and grancalcin). The Group I genes have also been found in lower animals, plants, fungi and protists. Recent findings of specific interacting proteins have started to gradually unveil the functions of the noncatalytic mammalian PEF proteins.  相似文献   

2.
Sorcin is a 21.6 kDa calcium binding protein, expressed in a number of mammalian tissues that belongs to the small, recently identified penta-EF-hand (PEF) family. Like all members of this family, sorcin undergoes a Ca2+-dependent translocation from cytosol to membranes where it binds to target proteins. For sorcin, the targets differ in different tissues, indicating that it takes part in a number of Ca2+-regulated processes. The sorcin monomer is organized in two domains like in all PEF proteins: a flexible, hydrophobic, glycine-rich N-terminal region and a calcium binding C-terminal domain. In vitro, the PEF proteins are dimeric in their Ca2+-free form, but have a marked tendency to precipitate when bound to calcium. Stabilization of the dimeric structure is achieved by pairing of the uneven EF-hand, EF5. Sorcin can also form tetramers at acid pH.The sorcin calcium binding domain (SCBD, residues 33-198) expressed in Escherichia coli was crystallized in the Ca2+-free form. The structure was solved by molecular replacement and was refined to 2.2 A with a crystallographic R-factor of 22.4 %. Interestingly, the asymmetric unit contains two dimers.The structure of the SCBD leads to a model that explains the solution properties and describes the Ca2+-induced conformational changes. Phosphorylation studies show that the N-terminal domain hinders phosphorylation of SCBD, i.e. the rate of phosphorylation increased twofold in the absence of the N-terminal region. In addition, previous fluorescence studies indicated that hydrophobic residues are exposed to solvent upon Ca2+ binding to full-length sorcin. The model accounts for these data by proposing that Ca2+ binding weakens the interactions between the two domains and leads to their reorientation, which exposes hydrophobic regions facilitating the Ca2+-dependent binding to target proteins at or near membranes.  相似文献   

3.
Peflin, a newly identified 30-kDa Ca(2+)-binding protein, belongs to the penta-EF-hand (PEF) protein family, which includes the calpain small subunit, sorcin, grancalcin, and ALG-2 (apoptosis-linked gene 2). We prepared a monoclonal antibody against human peflin. The antibody immunoprecipitated a 22-kDa protein as well as the 30-kDa protein from the lysate of Jurkat cells. Western blotting of the immunoprecipitates revealed that the 22-kDa protein corresponds to ALG-2. This was confirmed by Western blotting of the immunoprecipitates of epitope-tagged peflin or ALG-2 whose cDNA expression constructs were transfected to human embryonic kidney (HEK) 293 cells. Gel filtration of the cytosolic fraction of Jurkat cells revealed co-elution of peflin and ALG-2 in fractions eluting earlier than recombinant ALG-2, further supporting the notion of heterodimerization of the two PEF proteins. Surprisingly, peflin dissociated from ALG-2 in the presence of Ca(2+). Peflin and ALG-2 co-localized in the cytoplasm, but ALG-2 was also detected in the nuclei as revealed by immunofluorescent staining and subcellular fractionation. Peflin was recovered in the cytosolic fraction in the absence of Ca(2+) but in the membrane/cytoskeletal fraction in the presence of Ca(2+). These results suggest that peflin has features common to those of other PEF proteins (dimerization and translocation to membranes) and may modulate the function of ALG-2 in Ca(2+) signaling.  相似文献   

4.
Sorcin is a penta-EF hand Ca2+-binding protein that associates with both cardiac ryanodine receptors and L-type Ca2+ channels and has been implicated in the regulation of intracellular Ca2+ cycling. To better define the function of sorcin, we characterized transgenic mice in which sorcin was overexpressed in the heart. Transgenic mice developed normally with no evidence of cardiac hypertrophy and no change in expression of other calcium regulatory proteins. In vivo hemodynamics revealed significant reductions in global indices of contraction and relaxation. Contractile abnormalities were also observed in isolated adult transgenic myocytes, along with significant depression of Ca2+ transient amplitudes. Whole cell ICa density and the time course of activation were normal in transgenic myocytes, but the rate of inactivation was significantly accelerated. These effects of sorcin on L-type Ca2+ currents were confirmed in Xenopus oocyte expression studies. Finally, we examined the expression of sorcin in normal and failing hearts from spontaneous hypertensive heart failure rats. In normal myocardium, sorcin extensively co-localized with ryanodine receptors at the Z-lines, whereas in myopathic hearts the degree of co-localization was markedly disrupted. Together, these data indicate that sorcin modulates intracellular Ca2+ cycling and Ca2+ influx pathways in the heart.  相似文献   

5.
ALG-2 (apoptosis-linked gene-2 protein) and peflin are Ca(2+)-binding proteins and belong to the penta-EF-hand (PEF) protein family, which includes calpain, sorcin, and grancalcin. ALG-2 forms either a homodimer or a heterodimer with peflin like other PEF proteins. In this study, we found that the fifth-EF-hand (EF-5) regions of both ALG-2 and peflin are essential for dimerization and their stabilities. Exogenously expressed EF-5-deletion (DeltaEF-5) mutants of ALG-2 and peflin were unstable and were not detected in HEK293 cells by Western blotting. In a pulse--chase experiment, the DeltaEF-5 mutants were rapidly degraded, but they were stabilized by treatment with a proteasome inhibitor, MG132. In MG132-treated cells, DeltaEF-5 mutants were recovered in the insoluble fractions. Transient coexpression of ALG-2 increased the peflin level. These results indicate that the absence of a fifth EF-hand results in rapid degradation by the proteasome. On the other hand, stable expression of exogenous peflin decreased the amount of endogenous peflin. The amount of peflin that can dimerize with ALG-2 seems to be restricted in mammalian cells.  相似文献   

6.
Penta-EF-hand (PEF) proteins bind calcium and participate in a variety of calcium-dependent processes in vertebrates. In yeast, intracellular cations regulate processes like cell division and polarized growth. This study reports the identification of a unique PEF protein in Saccharomyces cerevisiae encoded by the uncharacterized open reading frame YGR058w. Pef1p has a long and unstructured N-terminal domain conserved in ascomycetes, and a highly conserved C-terminal calcium binding domain homologous to human ALG-2 and sorcin. Pef1p binds calcium and zinc and homodimerizes in vitro and in vivo like vertebrate homologues. Disruption of PEF1 induces defective growth in SDS and cation depletion conditions. Significantly, a critical substitution in the second EF hand (E218A) lowers the in vitro affinity for zinc and phenocopies growth defects. The dissection of protein-protein interactions and the cellular localization of Pef1p analogous to that of RAM pathway components controlling daughter-specific gene expression at the site of bud emergence bring out the importance of this novel protein. Our data suggest that cation homeostasis is involved in the control of polarized growth and in stress response in budding yeast.  相似文献   

7.
Sorcin (Soluble resistance related calcium binding protein) is a small soluble penta EF family (PEF) of calcium (Ca2+) binding protein (22,000 Da). It has been reported to play crucial roles in the regulation of calcium homeostasis, apoptosis, vesicle trafficking, cancer development, and multidrug resistance (MDR). Overexpression of sorcin has been reported to be associated with different cancers such as breast cancer, colorectal cancer, gastric cancer, leukemia, lung cancer, nasopharyngeal cancer, ovarian cancer, etc. Essentially, expression of sorcin has been found to be elevated in cancer cells as compared to normal cells, indicating that it has prominent role in cancer. Moreover, sorcin was found to be the regulator of various proteins that has an association with carcinogenesis including NF-κB, STAT3, Akt, ERK1/2, VEGF, MMPs, caspases, etc. Sorcin was also found to regulate apoptosis, as silencing of the same resulted in increased levels of proapoptotic genes and induced mitochondrial apoptotic pathway in cancer. Interestingly, mutations in the sorcin gene have been closely linked with poor overall survival in bladder cancer, brain lower-grade glioma, glioblastoma, glioblastoma multiforme, kidney renal clear cell carcinoma, and stomach adenocarcinoma. Additionally, overexpression of sorcin was also found to induce MDR against different chemotherapeutic drugs. All these findings mark the importance of sorcin in cancer development and MDR. Therefore, there is urgent need to explore the functional mechanism of sorcin and to analyze whether silencing of sorcin would able to chemosensitize MDR cells. The current review summarizes the structure, expression, and functions of sorcin and its importance in the regulation of various malignancies and MDR.  相似文献   

8.
Grancalcin is a Ca(2+)-binding protein expressed at high level in neutrophils. It belongs to the PEF family, proteins containing five EF-hand motifs and which are known to associate with membranes in Ca(2+)-dependent manner. Prototypic members of this family are Ca(2+)-binding domains of calpain. Our recent finding that grancalcin interacts with L-plastin, a protein known to have actin bundling activity, suggests that grancalcin may play a role in regulation of adherence and migration of neutrophils. The structure of human grancalcin has been determined at 1.9 A resolution in the absence of calcium (R-factor of 0.212 and R-free of 0.249) and at 2. 5 A resolution in the presence of calcium (R-factor of 0.226 and R-free of 0.281). The molecule is predominantly alpha-helical: it contains eight alpha-helices and only two short stretches of two-stranded beta-sheets between the loops of paired EF-hands. Grancalcin forms dimers through the association of the unpaired EF5 hands in a manner similar to that observed in calpain, confirming this mode of association as a paradigm for the PEF family. Only one Ca(2+) was found per dimer under crystallization conditions that included CaCl(2). This cation binds to EF3 in one molecule, while this site in the second molecule of the dimer is unoccupied. This unoccupied site shows higher mobility. The structure determined in the presence of calcium, although does not represent a fully Ca(2+)-loaded form, suggests that calcium induces rather small conformational rearrangements. Comparison with calpain suggests further that the relatively small magnitude of conformational changes invoked by calcium alone may be a characteristic feature of the PEF family. Moreover, the largest differences are localized to the EF1, thus supporting the notion that calcium signaling occurs through this portion of the molecule and that it may involve the N-terminal Gly/Pro rich segment. Electrostatic potential distribution shows significant differences between grancalcin and calpain domain VI demonstrating their distinct character.  相似文献   

9.
Sorcin is a 22 kD calcium-binding protein that is found in a wide variety of cell types, such as heart, muscle, brain and adrenal medulla. It belongs to the penta-EF-hand (PEF) protein family, which contains five EF-hand motifs that associate with membranes in a calcium-dependent manner. Prototypic members of this family are the calcium-binding domains of calpain, such as calpain dVI. Full-length human sorcin has been crystallized in the absence of calcium and the structure determined at 2.2 A resolution. Apart from an extended N-terminal portion, the sorcin molecule has a globular shape. The C-terminal domain is predominantly alpha-helical, containing eight alpha-helices and connecting loops incorporating five EF hands. Sorcin forms dimers through the association of the unpaired EF5, confirming this as the mode of association in the dimerization of PEF proteins. Comparison with calpain dVI reveals that the general folds of the individual EF-hand motifs are conserved, especially that of EF1, the novel EF-hand motif characteristic of the family. Detailed structural comparisons of sorcin with other members of PEF indicate that the EF-hand pair EF1-EF2 is likely to correspond to the two physiologically relevant calcium-binding sites and that the calcium-induced conformational change may be modest and localized within this pair of EF-hands. Overall, the results derived from the structural observations support the view that, in sorcin, calcium signaling takes place through the first pair of EF-hands.  相似文献   

10.
Sorcin, a 21.6 kDa two-domain penta-EF-hand (PEF) protein, when activated by Ca(2+) binding, interacts with target proteins in a largely uncharacterized process. The two physiological EF-hands EF3 and EF2 do not belong to a structural pair but are connected by the D helix. To establish whether this helix is instrumental in sorcin activation, two D helix residues were mutated: W105, located near EF3 and involved in a network of interactions, and W99, located near EF2 and facing solvent, were substituted with glycine. Neither mutation alters calcium affinity. The interaction of the W105G and W99G mutants with annexin VII and the cardiac ryanodine receptor (RyR2), requiring the sorcin N-terminal and C-terminal domain, respectively, was studied. Surface plasmon resonance experiments show that binding of annexin VII to W99G occurs at the same Ca(2+) concentration as that of the wild type, whereas W105G requires a significantly higher Ca(2+) concentration. Ca(2+) spark activity of isolated heart cells monitors the sorcin-RyR2 interaction and is unaltered by W105G but is reduced equally by W99G and the wild type. Thus, substitution of W105, via disruption of the network of D helix interactions, affects the capacity of sorcin to recognize and interact with either target at physiological Ca(2+) concentrations, while mutation of solvent-facing W99 has little effect. The D helix appears to amplify the localized structural changes that occur at EF3 upon Ca(2+) binding and thereby trigger a structural rearrangement that enables interaction of sorcin with its molecular targets. The same activation process may apply to other PEF proteins in view of the D helix conservation.  相似文献   

11.
Grancalcin is a recently described Ca(2+)-binding protein especially abundant in human neutrophils. Grancalcin belongs to the penta-EF-hand subfamily of EF-hand proteins, which also comprises calpain, sorcin, peflin, and ALG-2. Penta-EF-hand members are typified by two novel types of EF-hands: one that binds Ca(2+) although it has an unusual Ca(2+) coordination loop and one that does not bind Ca(2+) but is directly involved in homodimerization. We have developed a novel method for purification of native grancalcin and found that the N terminus of wild-type grancalcin is acetylated. This posttranslational modification does not affect the secondary structure or conformation of the protein. We found that both native and recombinant grancalcin always exists as a homodimer, regardless of the Ca(2+) load. Flow dialysis showed that recombinant grancalcin binds two Ca(2+) per subunit with positive cooperativity and moderate affinity ([Ca(2+)](0.5) of 25 and 83 microm in the presence and absence of octyl glycoside, respectively) and that the sites are of the Ca(2+)-specific type. Furthermore, we showed, by several independent methods, that grancalcin undergoes important conformational changes upon binding of Ca(2+) and subsequently exposes hydrophobic amino acid residues, which direct the protein to hydrophobic surfaces. By affinity chromatography of solubilized human neutrophils on immobilized grancalcin, L-plastin, a leukocyte-specific actin-bundling protein, was found to interact with grancalcin in a negative Ca(2+)-dependent manner. This was substantiated by co-immunoprecipitation of grancalcin by anti-L-plastin antibodies and vice versa.  相似文献   

12.
BACKGROUND: The Ca2+ binding apoptosis-linked gene-2 (ALG-2) protein acts as a proapoptotic factor in a variety of cell lines and is required either downstream or independently of caspases for apoptosis to occur. ALG-2 belongs to the penta-EF-hand (PEF) protein family and has two high-affinity and one low-affinity Ca2+ binding sites. Like other PEF proteins, its N terminus contains a Gly/Pro-rich segment. Ca2+ binding is required for the interaction with the target protein, ALG-2 interacting protein 1 (AIP1). RESULTS: We present the 2.3 A resolution crystal structure of Ca2+-Ioaded des1-20ALG-2 (aa 21-191), which was obtained by limited proteolysis of recombinant ALG-2 with elastase. The molecule contains eight alpha helices that fold into five EF-hands, and, similar to other members of this protein family, the molecule forms dimers. Ca2+ ions bind to EF1, EF3, and, surprisingly, to EF5. In the related proteins calpain and grancalcin, the EF5 does not bind Ca2+ and is thought to primarily facilitate dimerization. Most importantly, the conformation of des1-20ALG-2 is significantly different from that of calpain and grancalcin. This difference can be described as a rigid body rotation of EF1-2 relative to EF4-5 and the dimer interface, with a hinge within the EF3 loop. An electron density, which is interpreted as a hydrophobic Gly/Pro-rich decapeptide that is possibly derived from the cleaved N terminus, was found in a hydrophobic cleft between these two halves of the molecule. CONCLUSIONS: A different relative orientation of the N- and C-terminal halves of des1-20ALG-2 in the presence of Ca2+ and the peptide as compared to other Ca2+loaded PEF proteins changes substantially the shape of the molecule, exposing a hydrophobic patch on the surface for peptide binding and a large cleft near the dimer interface. We postulate that the binding of a Gly/ Pro-rich peptide in the presence of Ca2+ induces a conformational rearrangement in ALG-2, and that this mechanism is common to other PEF proteins.  相似文献   

13.
Penta-EF-hand (PEF) proteins such as ALG-2 (apoptosis-linked gene 2 product) and the calpain small subunit are a newly classified family of Ca(2+)-binding proteins that possess five EF-hand-like motifs. We identified two mutually homologous PEF proteins, designated DdPEF-1 and DdPEF-2 (64% amino acid residue identities), in the cellular slime mold Dictyostelium discoideum. Both PEF proteins showed a higher similarity to mammalian ALG-2 and peflin (Group I PEF proteins) than to calpain and sorcin subfamily (Group II PEF proteins) in the first EF-hand (EF-1) regions. Northern blot analyses revealed that DdPEF-1 and DdPEF-2 were constitutively expressed throughout development of Dictyostelium, but their levels of expression were developmentally regulated. In situ hybridization analyses demonstrated that DdPEF-1 was expressed in both the anterior prestalk and the posterior prespore regions of the tipped aggregate, slugs and early culminants. On the other hand, DdPEF-2 was dominantly expressed in the anterior tip region of these multicellular structures. Both PEF proteins were detected as 22-23-kDa proteins in soluble fractions in the presence of EGTA but in particulate fractions in the presence of Ca(2+) by Western blotting using specific monoclonal antibodies. Together with the finding of PEF-like sequences in DNA databases of plants, fungi and protists, our results strongly suggest that Group I PEF proteins are ubiquitously present in all eukaryotes and play important roles in basic cellular functions.  相似文献   

14.
Plants possess multiple genes encoding calcium sensor proteins that are members of the penta-EF-hand (PEF) family. Characterized PEF proteins such as ALG-2 (apoptosis-linked gene 2 product) and the calpain small subunit function in diverse cellular processes in a calcium-dependent manner by interacting with their target proteins at either their N-terminal extension or Ca2+ binding domains. We have identified a previously unreported class of PEF proteins in plants that are notable because they do not possess the hydrophobic amino acid rich N-terminal extension that is typical of these PEF proteins. We demonstrate that the maize PEF protein without the N-terminal extension has the characteristics of known PEF proteins; the protein binds calcium in the 100 nM range and, as a result of calcium binding, displays an increase in hydrophobicity. Characterization of the truncated maize PEF protein provides insights into the role of the N-terminal extension in PEF protein signaling. In the context of the current model of how PEF proteins are activated by calcium binding, these results demonstrate that this distinctive class of PEF proteins could function as calcium sensor proteins in plants even in the absence of the N-terminal extension.  相似文献   

15.
Such phagocytic leukocytes as macrophages and neutrophils are the key cellular components of innate immunity. The actin cytoskeleton is essential for their recruitment and activation in infected tissues. We have previously identified p65/L-plastin with Ca(2+)-, calmodulin-, and beta-actin-binding domains in macrophages. In order to further investigate the p65/L-plastin-involved cellular functions, we cloned the cDNA for murine grancalcin, a possible binding partner of p65/L-plastin. According to the sequence, grancalcin is a member of the penta-EF-hand protein family. We prepared recombinant (r) grancalcin for functional studies and found that it exhibited Ca(2+)-dependent precipitation. High-titer antibodies against the protein enabled us to detect intracellular grancalcin. A flow cytometric analysis revealed grancalcin to be highly expressed in macrophages and neutrophils. The protein was particularly abundant in those cells recovered from bacteria-infected sites. Immunohistochemical studies clarified that grancalcin was translocated to the actin cytoskeleton in macrophages upon exposure to bacterial lipopolysaccharide. These findings suggest that grancalcin plays a key role in leukocyte-specific functions that are responsible for host defense.  相似文献   

16.
Grancalcin, one of the penta-EF-hand Ca(2+) binding proteins, is expressed at high levels in polymorphonuclear granulocytes (neutrophils). EF-hand proteins are implicated in the regulation of diverse processes including cell migration, apoptosis, and mobilization of neutrophil effector functions. To determine the role of grancalcin in vivo, we inactivated the gene encoding grancalcin (Gca) in embryonic stem cells and generated grancalcin-deficient mice. Homozygous Gca mutants appeared healthy and reproduced normally. Leukocyte recruitment into the peritoneal cavity upon induction of inflammation was not significantly affected by the absence of grancalcin. The mutants also resisted systemic fungal infection similarly to wild-type mice, and in vitro killing of Staphylococcus aureus by inflammatory cells was not significantly impaired. While marginally increased survival rates of mutants faced with endotoxic shock may indicate a contribution of grancalcin to immunopathogenesis, it is not essential for vital leukocyte effector functions required to control microbial infections.  相似文献   

17.
A homogeneous high-throughput screening method based on time-resolved fluorescence resonance energy transfer (TR-FRET) for the measurement of calcium-dependent multimerization of an EF-hand protein, sorcin, is described. The assay is based on a specific sorcin binding peptide conjugated either with an intrinsically highly fluorescent europium chelate (donor) or an Alexa Fluor 700 fluorophore (acceptor). Addition of calcium results in multimerization of sorcin, allowing several peptides to bind simultaneously to the epitopes of the multimeric protein complex, and the proximity of peptides labeled either with donor or acceptor label results in fluorescence resonance energy transfer between the 2 labels. When no calcium is present, the protein remains in a monomer form, and thus no FRET can take place. In the optimized assay construct, the assay was performed in 45 min, and a more than 20-fold signal-to-background ratio was achieved. The reversibility of sorcin multimerization was shown by chelating free calcium with ethylenediamine tetraacetic acid (EDTA). The developed homogeneous assay can be used in screening molecules that either inhibit or enhance multimerization of sorcin, and the assay format is applicable to various noncompetitive high-throughput screening assays detecting protein multimerization reactions.  相似文献   

18.
A novel EF-hand Ca(2+)-binding protein we have called grancalcin has been identified and characterized. This protein is particularly abundant in neutrophils and monocytes, with relatively small amounts in lymphocytes. The cDNA for this protein has been cloned and sequenced. The sequence predicts that the protein is composed of 217 amino acids, with a molecular mass of 24,010 daltons. It contains four EF-hand calcium-binding motifs and exhibits strong homology to sorcin, one of two proteins overexpressed in multidrug-resistant cells whose function is unknown. There are potentially one phosphorylation and two glycosylation sites. The 1.65-kilobase mRNA is detected in bone marrow and is present in neutrophils, monocytes, macrophages, B and T lymphocytes, and the promyelocytic cell line HL60s. The protein displays a Ca(2+)-dependent translocation to the granules and plasma membrane of neutrophils, suggesting that it might play an effector role in the specialized functions of these cells.  相似文献   

19.
The detergent (Triton X-100, 4 °C)-resistant membrane (DRM)-associated membrane proteins stomatin, sorcin, and synexin (anexin VII) exposed on the cytoplasmic side of membrane were investigated for their lateral distribution in relation to induced gangliosideM1 (GM1) raft patches in flat (discocytic) and curved (echinocytic) human erythrocyte membrane. In discocytes, no accumulation of stomatin, sorcin, and synexin in cholera toxin subunit B (CTB) plus anti-CTB-induced GM1 patches was detected by fluorescence microscopy. In echinocytes, stomatin, sorcin, and synexin showed a similar curvature-dependent lateral distribution as GM1 patches by accumulating to spiculae induced by ionophore A23187 plus calcium. Stomatin was partly and synexin and sorcin were fully recruited to the spiculae. However, the DRM-associated proteins only partially co-localized with GM1 and were frequently distributed into different spiculae than GM1. The study indicates that stomatin, sorcin, and synexin are echinophilic membrane components that mainly locate outside GM1 rafts in the human erythrocyte membrane. Echinophilicity is suggested to contribute to the DRM association of a membrane component in general.  相似文献   

20.
ALG-2 is a highly conserved calcium binding protein in the cytoplasm which belongs to the family of penta-EF hand proteins. Recently, we showed that ALG-2 is interacting with RBM22, a highly conserved spliceosomal nuclear protein (Montaville et al. Biochim. Biophys. Acta 1763, 1335, 2006; Krebs, Biochim. Biophys. Acta 1793, 979, 2009). In NIH 3T3 cells expressing both proteins a significant amount of ALG-2mRFP is translocated to the nucleus due to the interaction with RBM22-EGFP. hSlu7, another spliceosomal nuclear protein, known to interact with RBM22 in yeast, has been shown to translocate to the cytoplasm under cellular stress conditions. Here we provide evidence that the 2 spliceosomal proteins differ significantly in their subcellular distributions under stress conditions, and that RBM22 enhances the cytoplasmic translocation of hSlu7 under stress, especially a stress induced by thapsigargin. On the other hand, in NIH 3T3 cells expressing RBM22-EGFP and ALG-2-mRFP, ALG-2 remains translocated into the nucleus under both stress conditions, i.e. heat shock or treatment with thapsigargin. We could further demonstrate that these stress conditions had a different influence on the splicing pattern of XBP-1, a marker for the unfolded protein response indicating that ER stress may play a role in stress-induced translocation of spliceosomal proteins. The article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号