共查询到20条相似文献,搜索用时 15 毫秒
2.
3.
4.
5.
6.
7.
Zoos exude a certain self‐confidence regarding their roles as education providers. Indeed, the education outputs of zoos are, at face value, pretty impressive, with most investing in learning opportunities for leisure visitors, education groups and in some cases, as part of their in situ programs. However, these outputs are not necessarily reliable indicators of the educational achievements of zoos. Quantity does not necessarily equate to quality, just as outputs do not necessarily lead to outcomes. Zoo‐accreditation organizations such as the AZA and EAZA offer us clear insight into the strategic vision underpinning the education goals for zoo visitors; a heightened appreciation of the value of biodiversity and a connectedness with the natural world. Unsurprisingly, most zoos have educational goals that ally neatly with the vision of their respective accreditation body. Consequently, we are left with fairly narrow, top‐down educational goals. This does not necessarily sit well with what we know about the unpredictability of “free choice” learning in environments such as zoos and aquariums, or what is known about public science communication. Research that seeks to explore the impacts of zoo visits often focuses on evaluating performance based on educational goals and the findings are used as a means of providing evidence of institutional achievement. However, any visitor outcome that falls outside of this narrow range could well be missed by the research. In this article, we propose that research that takes unpredictable and unexpected outcomes into account is necessary and overdue. Zoo Biol. 32:13‐18, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
8.
Neurochemical Research - Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of... 相似文献
9.
10.
Vitiligo is a puzzling disorder characterized by a disappearance of epidermal and/or follicular melanocytes by unknown mechanisms. This very common disorder involving 1–4% of the world population is thus of great importance for the practicing dermatologist. The cellular and molecular mechanisms leading to the destruction of melanocytes in this disorder have not yet been elucidated, making it of major interest for the cell biologist involved in melanocyte research. Recent advances in this field, due largely to the availability of techniques for culturing normal human melanocytes, opened new perspectives in the understanding of vitiligo. Although vitiligo has long been considered a disorder confined to the skin, there is now good evidence that it also involves the extracutaneous compartment of the “melanocyte organ.” It is also clear that vitiligo is not only a melanocyte disorder, but that it also involves cells, such as keratinocytes and Langerhans cells, found in the epidermis and follicular epithelium. The three prevailing theories of the pathogenesis of vitiligo are the immune hypothesis, the neural hypothesis, and the self-destruct hypothesis. New hypotheses suggest that vitiligo may be due to (1) a deficiency in an unidentified melanocyte growth factor, (2) an intrinsic defect of the structure and function of the rough endoplasmic reticulum in vitiligo melanocytes, (3) abnormalities in a putative melatonin receptor on melanocytes and (4) a breakdown in free radical defense in the epidermis. None of these hypotheses has been demonstrated, and according to the available data, it is likely that the loss of epidermal and follicular melanocytes in vitiligo may be the result of several different pathogenetic mechanisms. 相似文献
11.
Background
Multidrug-resistant tuberculosis (MDR-TB) is resistant to both rifampicin (RIF) and isoniazid (INH). Whereas many TB diagnostics detect RIF-resistance, few detect INH-monoresistance, which is common and may increase risk of acquired MDR-TB. Whether inclusion of INH-resistance in a first-line rapid test for TB would have an important impact on MDR-TB rates remains uncertain.Methods
We developed a transmission model to evaluate three tests in a population similar to that of India: a rapid molecular test for TB, the same test plus RIF-resistance detection (“TB+RIF”), and detection of RIF and INH-resistance (“TB+RIF/INH”). Our primary outcome was the prevalence of INH-resistant and MDR-TB at ten years.Results
Compared to the TB test alone and assuming treatment of all diagnosed MDR cases, the TB+RIF test reduced the prevalence of MDR-TB among all TB cases from 5.5% to 3.8% (30.6% reduction, 95% uncertainty range, UR: 17–54%). Despite using liberal assumptions about the impact of INH-monoresistance on treatment outcomes and MDR-TB acquisition, expansion from TB+RIF to TB+RIF/INH lowered this prevalence only from 3.8% to 3.6% further (4% reduction, 95% UR: 3–7%) and INH-monoresistant TB from 15.8% to 15.1% (4% reduction, 95% UR: (-8)-19%).Conclusion
When added to a rapid test for TB plus RIF-resistance, detection of INH-resistance has minimal impact on transmission of TB, MDR-TB, and INH-monoresistant TB. 相似文献12.
Karen R. Siegel Mohammed K. Ali Adithi Srinivasiah Rachel A. Nugent K. M. Venkat Narayan 《PloS one》2014,9(8)
Background
Low fruit and vegetable (FV) intake is a leading risk factor for chronic disease globally, but much of the world’s population does not consume the recommended servings of FV daily. It remains unknown whether global supply of FV is sufficient to meet current and growing population needs. We sought to determine whether supply of FV is sufficient to meet current and growing population needs, globally and in individual countries.Methods and Findings
We used global data on agricultural production and population size to compare supply of FV in 2009 with population need, globally and in individual countries. We found that the global supply of FV falls, on average, 22% short of population need according to nutrition recommendations (supply:need ratio: 0.78 [Range: 0.05–2.01]). This ratio varies widely by country income level, with a median supply:need ratio of 0.42 and 1.02 in low-income and high-income countries, respectively. A sensitivity analysis accounting for need-side food wastage showed similar insufficiency, to a slightly greater extent (global supply:need ratio: 0.66, varying from 0.37 [low-income countries] to 0.77 [high-income countries]). Using agricultural production and population projections, we also estimated supply and need for FV for 2025 and 2050. Assuming medium fertility and projected growth in agricultural production, the global supply:need ratio for FV increases slightly to 0.81 by 2025 and to 0.88 by 2050, with similar patterns seen across country income levels. In a sensitivity analysis assuming no change from current levels of FV production, the global supply:need ratio for FV decreases to 0.66 by 2025 and to 0.57 by 2050.Conclusion
The global nutrition and agricultural communities need to find innovative ways to increase FV production and consumption to meet population health needs, particularly in low-income countries. 相似文献13.
《Cell cycle (Georgetown, Tex.)》2013,12(7):871-873
The position of a gene in the genome may have important consequences for its function. Therefore, when a new duplicate gene arises, its location may be critical in determining its fate. Our recent work in humans, mouse, and Drosophila provided a test by studying the patterns of duplication in sex chromosome evolution. We revealed a bias in the generation and recruitment of new gene copies involving the X chromosome that has been shaped largely by selection for male germline functions. The gene movement patterns we observed reflect an ongoing process as some of the new genes are very young while others were present before the divergence of humans and mouse. This suggests a continuing redistribution of male-related genes to achieve a more efficient allocation of male functions. This notion should be further tested in organisms employing other sex determination systems or in organisms differing in germline X chromosome inactivation. It is likely that the selective forces that were detected in these studies are also acting on other types of duplicate genes. As a result, future work elucidating sex chromosome differentiation by other mutational mechanisms will shed light on this important process. 相似文献
14.
15.
16.
Do We Need Another Model Plant? 总被引:1,自引:0,他引:1
Reski R 《Plant biology (Stuttgart, Germany)》2005,7(3):219-219
17.
18.
《Cell cycle (Georgetown, Tex.)》2013,12(7):884-892
When p73 and p63 were initially described as homologues of the tumor suppressor p53, the three family members seemed almost exchangeable, raising the question why all three were retained during evolution. It later turned out that the corresponding genes, TP63 and TP73, appear phylogenetically older than TP53, and that their targeted deletion causes severe developmental defects, in contrast to a deletion of TP53. Hence, p63 and p73 are responsible for biological effects that cannot be elicited by p53 alone. Here, we provide an overview of properties ascribed to p63 and p73 that distinguish them from p53. Differences occur at the following levels: i) protein structure, especially with regard to the aminoterminal transactivation domains and the carboxyterminal portions unique to p63 and p73; ii) regulation, affecting mRNA levels, posttranslational modifications and interaction with other cellular proteins; iii) activities, resulting in the regulation of gene expression, the programming of development, and the emergence of tumors. We speculate that, during the course of evolution, p63 and p73 have first pursued a broader range of activities, whereas p53 later specialized on genome maintenance. 相似文献
19.
《Cell cycle (Georgetown, Tex.)》2013,12(4):306-308
During the G1 phase of the cell cycle, replication origins are prepared to fire, a process that is referred to as origin licensing. It was often pondered what a cell’s fate would be if not all of its replication origins were licensed and subsequently activated during S phase. One obvious prediction was that S phase would simply be prolonged. As it turns out, however, the consequences are much more complex. A short G1 phase enforced by premature entry into S phase, or other events that negatively affect origin licensing, will ultimately compromise the cell’s ability to complete DNA replication before entering mitosis. As a result, the cell becomes genomically unstable when it attempts to repair unreplicated DNA during anaphase. Thus, the density of active replication origins in the chromosomes of eukaryotic cells determines S phase dynamics and chromosome stability during mitosis. 相似文献