首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic responses of stomatal conductance (g s) net photosynthesis (A) and leaf water potential (Ψleaf) to a progressive drought were examined in nine poplar clones (Populus spp.) with contrasting drought tolerance from the Canadian Prairies, a region prone to frequent droughts. Plants were grown in a greenhouse and either well-watered or drought preconditioned (5–6 cycles of drought) for 8 weeks. At the end of the last cycle, plants were watered to saturation then progressively dried-down (−1.25 MPa Ψsoil) during which A, g s and Ψleaf were measured. Drought tolerant Okanese reached the lowest combined Ψleaf while sensitive clones (Assiniboine and Imperial) had the highest (−1.6 vs. −1.1 MPa). Steady state g s (measured under well watered conditions) was lower in tolerant (Okanese and Tristis SBC#1) than in sensitive clones. Preconditioning reduced steady state g s in all clones, lowered the threshold Ψleaf for stomatal closure and the minimum Ψleaf in most clones but did not affect the steady state A. Tolerant and some moderately tolerant clones maintained higher A at lower Ψleaf than the other clones. Stomatal closure was gradual in tolerant clones and in moderately tolerant Northwest but rapid in the other clones. Stomata in the sensitive clones closed at the highest Ψleaf, Okanese closed at the lowest. The substantial range in gas exchange and Ψleaf responses observed here represented both drought tolerance and taxonomic (Aegiros or Tacamahaca sections) traits which could play a role in the survival and productivity in environments with limited water or during periods of drought.  相似文献   

2.
Diurnal changes in gas exchange, chlorophyll fluorescence and leaf water potential (leaf) were measured to determine the environmental and physiological factors that limit carbon gain in the horizontal leaves of Fagus crenata Blume at the canopy top. Although midday depression of the net CO2 assimilation rate (An) and stomatal conductance (gH2O) were clearly evident on a fine day, the potential quantum yield of PS II (Fv/Fm) was fairly constant around 0.83 throughout the day. This result indicates that the leaves at the canopy top do not suffer from chronic photoinhibition, and the excess energy is dissipated safely. Large reversible increases in non-photochemical quenching (NPQ) were evident on fine days. Therefore, the non-radiative energy dissipation of excess light energy contributed to avoid chronic photoinhibition. The electron transfer rate (ETR) reached maximum during the midday depression, and thus there was no positive relation between ETR and An under high light conditions, indicating a high rate of photorespiration and the absence of non-stomatal effect during midday. The protective mechanisms such as non-radiative energy dissipation and photorespiration play an important role in preventing photoinhibitory damage, and stomatal limitation is the main factor of midday depression of An. To separate the effect of air to leaf vapor pressure deficit (ALVPD) and leaf temperature (Tleaf) on gas exchange, the dependencies of An and gH2O on ALVPD and Tleaf were measured using detached branches under controlled conditions. An and gH2O were insensitive to an increase in Tleaf. With the increase in ALVPD, An and gH2O exhibited more than a 50% decrease even though water supply was optimum, suggesting the dominant role of high ALVPD in the midday depression of gH2O. We conclude that midday depression of An results from the midday stomatal closure caused by high ALVPD.  相似文献   

3.
In this study, tree hydraulic conductance (K tree) was experimentally manipulated to study effects on short-term regulation of stomatal conductance (g s), net photosynthesis (A) and bulk leaf water potential (Ψleaf) in well watered 5–6 years old and 1.2 m tall maritime pine seedlings (Pinus pinaster Ait.). K tree was decreased by notching the stem and increased by progressively excising the root system and stem. Gas exchange was measured in a chamber at constant irradiance, vapour pressure deficit, leaf temperature and ambient CO2 concentration. As expected, we found a strong and positive relationship between g s and K tree (r = 0.92, P = 0.0001) and between A and K tree (r = 0.9, P = 0.0001). In contrast, however, we found that the response of Ψleaf to K tree depended on the direction of change in K tree: increases in K tree caused Ψleaf to decrease from around −1.0 to −0.6 MPa, but reductions in K tree were accompanied by homeostasis in Ψleaf (at −1 MPa). Both of these observations could be explained by an adaptative feedback loop between g s and Ψleaf, with Ψleaf prevented from declining below the cavitation threshold by stomatal closure. Our results are consistent with the hypothesis that the observed stomatal responses were mediated by leaf water status, but they also suggest that the stomatal sensitivity to water status increased dramatically as Ψleaf approached −1 MPa.  相似文献   

4.
Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short‐time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre‐defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re‐watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re‐watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long‐term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water‐use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.  相似文献   

5.
Augé RM  Toler HD  Sams CE  Nasim G 《Mycorrhiza》2008,18(3):115-121
Stomatal conductance (g s) and transpiration rates vary widely across plant species. Leaf hydraulic conductance (k leaf) tends to change with g s, to maintain hydraulic homeostasis and prevent wide and potentially harmful fluctuations in transpiration-induced water potential gradients across the leaf (ΔΨ leaf). Because arbuscular mycorrhizal (AM) symbiosis often increases g s in the plant host, we tested whether the symbiosis affects leaf hydraulic homeostasis. Specifically, we tested whether k leaf changes with g s to maintain ΔΨ leaf or whether ΔΨ leaf differs when g s differs in AM and non-AM plants. Colonization of squash plants with Glomus intraradices resulted in increased g s relative to non-AM controls, by an average of 27% under amply watered, unstressed conditions. Stomatal conductance was similar in AM and non-AM plants with exposure to NaCl stress. Across all AM and NaCl treatments, k leaf did change in synchrony with g s (positive correlation of g s and k leaf), corroborating leaf tendency toward hydraulic homeostasis under varying rates of transpirational water loss. However, k leaf did not increase in AM plants to compensate for the higher g s of unstressed AM plants relative to non-AM plants. Consequently, ΔΨ leaf did tend to be higher in AM leaves. A trend toward slightly higher ΔΨ leaf has been observed recently in more highly evolved plant taxa having higher productivity. Higher ΔΨ leaf in leaves of mycorrhizal plants would therefore be consistent with the higher rates of gas exchange that often accompany mycorrhizal symbiosis and that are presumed to be necessary to supply the carbon needs of the fungal symbiont.  相似文献   

6.
Diurnal depression of leaf hydraulic conductance in a tropical tree species   总被引:10,自引:2,他引:8  
Diurnal patterns of hydraulic conductance of the leaf lamina (Kleaf) were monitored in a field‐grown tropical tree species in an attempt to ascertain whether the dynamics of stomatal conductance (gs) and CO2 uptake (Aleaf) were associated with short‐term changes in Kleaf. On days of high evaporative demand mid‐day depression of Kleaf to between 40 and 50% of pre‐dawn values was followed by a rapid recovery after 1500 h. Leaf water potential during the recovery stage was less than ?1 MPa implying a refilling mechanism, or that loss of Kleaf was not linked to cavitation. Laboratory measurement of the response of Kleaf to Ψleaf confirmed that leaves in the field were operating at water potentials within the depressed region of the leaf ‘vulnerability curve’. Diurnal courses of Kleaf and Ψleaf predicted from measured transpiration, xylem water potential and the Kleaf vulnerability function, yielded good agreement with observed trends in both leaf parameters. Close correlation between depression of Kleaf, gs and Aleaf suggests that xylem dysfunction in the leaf may lead to mid‐day depression of gas exchange in this species.  相似文献   

7.
Spatial and daily variation in photosynthetic water-use efficiency was examined in leaves of Betula pendula Roth with respect to distribution of hydraulic conductance within the crown, morphological properties of stomata, and water availability. Intrinsic water-use efficiency (A n/g s) was determined from gas-exchange measurements performed both in situ in a natural forest stand and on detached shoots under laboratory conditions. In intact foliage, sun leaves demonstrated significantly higher (P < 0.001) A n/g s than shade leaves, as photosynthesis in the lower canopy was chronically limited by low light availability. However, this difference reversed in the mid-day period under sufficient irradiance (I > 800 μmol m−2 s−1): A n/g s averaged 28.8 and 24.0 μmol mol−1 (P < 0.01) for shade and sun leaves, respectively. This last finding coincided with the data obtained in laboratory conditions: under equivalent leaf water supply and light, A n/g s in shade foliage was greater (P < 0.001) than in sun foliage across a wide range of irradiance. Thus, shade foliage of B. pendula is characterized by inherently higher A n/g s than sun foliage, associated with more conservative stomatal behavior, and lower soil-to-leaf (K T) and leaf hydraulic conductances. Under unlimited light conditions, a within-crown trade-off between A n/g s and K T becomes apparent. Differences in stomatal conductance between the detached shoots from sunlit and shaded canopy layers were largely attributable to the variation in stomatal morphology; significant relationships were established with characteristics combining stomatal size and density (relative stomatal surface, stomatal pore area index). Stomatal morphology is very likely involved in long-term adjustment of photosynthetic WUE.  相似文献   

8.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

9.
A water flux model, which assumes that the dynamic functioning of the soil-plant-atmosphere continuum may be described by a series of steady states, was examined as a means for interpreting leaf water potential measurements in ‘Valencia’ orange trees (Citrus sinensis (L.) Osbeck). According to the model, leaf water potential should be related to transpirational flux, which in this experiment was estimated by the ratio of vapor pressure deficit of the atmosphere to leaf diffusion resistance (VPD/rleaf). Leaf water potentials decreased in a specific relationship with increasing values of VPD/rleaf provided that soil water was adequate and soil temperature was not too low, but regardless of season of the year or climatic or edaphic differences among 3 field locations. When soil water tensions exceeded 0.3 bar or when soil temperatures were lower than 15°C, deviations from the model occurred in the form of more negative leaf water potentials than predicted by VPD/rleaf. The model predicts from simple measurements made on intact plants that these differences were due to the modification of flow resistances by cool temperatures and the modification of both resistances and the potential of water at the source in the case of soil water depletion. The model may be a useful tool for interpreting plant water potential data under contrasting environmental conditions.  相似文献   

10.
Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9–5.1 °C and increased VPD of 0.5–1.3 kPa on transpiration and stomatal conductance (gs) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring‐porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short‐term stomatal responses to VPD may not be representative of long‐term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption.  相似文献   

11.
Three- and four-year-old potted, greenhouse-grown cedar seedlings were subjected to two different watering regimes: half received full water supply and the other half was submitted to moderate drought (50% of the full water supply). Height growth was the greatest for C. atlantica and the most-limited for C. brevifolia in the well-watered set. However, in the dry set, height growth was less affected by drought conditions for C. brevifolia than for C. atlantica. Cedrus libani gave intermediate results for both watering regimes. Moderate drought provoked a decrease in osmotic potential at full leaf turgor and a long-lasting osmotic adjustment. When irrigation was withheld completely to induce severe soil drying, gas exchange decreased and then stopped at predawn water potentials of −3.0 MPa for C. brevifolia, between −2.6 and −2.8 MPa for C. libani, and at −2.4 MPa for C. atlantica, irrespective of watering regime. For all species, the dry set showed lower net photosynthesis (A) and stomatal conductance (g s) than the plants in the well-watered set. A and g s responded to variations in atmospheric water-vapour pressure deficit (VPD). As VPD increased, A and g s decreased, and this trend was proportionate to initial values at low VPD, but remained independent of previous watering treatments, plant water status or species. To conclude, C. brevifolia appears to be a species with limited growth potential but strong soil drought tolerance whereas C. atlantica has strong growth potential when an adequate water supply is available but is more sensitive to soil drought. C. libani shows an intermediate behaviour for growth and drought tolerance.  相似文献   

12.
Gas exchange of Carex cinerascens was carried out in Swan Islet Wetland Reserve (29°48′ N, 112°33′ E). The diurnal photosynthetic course of C. cinerascens in the flooded and the nonflooded conditions were analyzed through the radial basis function (RBF) neural network approach to evaluate the influences of environmental variables on the photosynthetic activity. The inhibition of photosynthesis induced by soil flooding can be attributed to the reduced stomatal conductance (g s), the deficiency of Rubisco regeneration and decreased chlorophyll (Chl) content. As revealed by analysis of artificial neural network (ANN) models, g s was the dominant factor in determining the photosynthesis response. Weighting analysis showed that the effect of water pressure deficit (VPD) > air temperature (T) > CO2 concentration (C a) > air humidity (RH) > photosynthetical photon flux density (PPFD) for the nonflooded model, whereas for the flooded model, the factors were ranked in the order VPD > C a > RH > PPFD > T. The different photosynthetic response of C. cinerascens found between the nonflooded and flooded conditions would be useful to evaluate the flood tolerance at plant species level.  相似文献   

13.
Water‐use efficiency in grapevines is dependent on the aerial and below‐ground environment of the plant. Specifically, transpiration efficiency, the ratio of net carbon fixation to water loss, may be influenced by soil moisture and the leaf‐to‐air vapour pressure deficit (VPD) in the soil–plant–atmosphere continuum. The interactive effect of these abiotic parameters, however, has not been suitably investigated in field‐grown grapevines. Accordingly, gas exchange of an anisohydric variety, Semillon, was assessed across a number of vineyards in two warm grape‐growing regions of New South Wales (NSW) to ascertain how soil moisture and VPD interact to affect transpiration efficiency at the leaf level. Leaf gas exchange measurements demonstrated that the rate of transpiration (E) was driven by VPD, particularly under high soil moisture. Both high VPD and low soil moisture decreased photosynthesis (A) and instantaneous leaf transpiration efficiency (A/E). Increased intrinsic leaf transpiration efficiency (A/g) in response to drying soil was limited to vines growing in a non‐irrigated vineyard. In this site, A/g was negatively related to vine water status. VPD did not have a substantial influence on A/g in any vineyard. While VPD is the main driver for A/E, soil moisture is an important determinant of A/g. Under high VPD, stomatal closure in Semillon leaves was not substantial enough to suitably curtail transpiration, and as a consequence A/E declined. These data indicate that in warm climates, irrigation scheduling of anisohydric varieties must take into account both VPD and soil moisture so that vine water status can be maintained.  相似文献   

14.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

15.
Andrew G. Peterson 《Oecologia》1999,118(2):144-150
The relationship between photosynthetic carbon assimilation (A max) and leaf nitrogen content (N leaf) can be expressed on either a leaf area basis (A area vs N area) or a leaf mass basis (A mass vs N mass). Dimensional analysis shows that the units for the slope of this relationship are the same for both expressions (μmol [CO2] g−1 [N] s−1). Thus the slope measures the change in CO2 assimilation per gram of nitrogen, independent of leaf mass or leaf area. Although they have the same units, large differences between the area and mass-based slopes have been observed over a broad range of taxonomically diverse species. Some authors have claimed that regardless of these differences, the fundamental nature of the A max-N leaf relationship is independent of the units of expression. In contrast, other authors have claimed that the area-based A max-N leaf relationship is fundamentally different from the mass-based relationship because of interactions between A max, N leaf, and leaf mass per area (LMA, g [leaf] m−2 [leaf]). In this study we consider the mathematical relationships involved in the transformation from mass- to area-based expressions (and vice versa), and the implications this transformation has for the slope of the A max-N leaf relationship. We then show that the slope of the relationship is independent of the units of expression when the effect of LMA is controlled statistically using a multiple regression. The validity of this hypothesis is demonstrated using 13 taxonomically and functionally diverse C3 species. This analysis shows that the slope of the A max-N leaf relationship is similar for the mass- and area-based expressions and that significant errors in the estimate of the slope can arise when the effect of LMA is not controlled. Received: 7 May 1998 / Accepted: 19 October 1998  相似文献   

16.
Studies on the temperature (T) responses of photosynthesis and leaf hydraulic conductance (Kleaf) are important to plant gas exchange. In this study, the temperature responses of photosynthesis and Kleaf were studied in Shanyou 63 (Oryza sativa) and Yannong 19 (Triticum aestivum). Leaf water potential (Ψleaf) was insensitive to T in Shanyou 63, while it significantly decreased with T in Yannong 19. The differential ΨleafT relationship partially accounted for the differing gmT relationships, where gm was less sensitive to T in Yannong 19 than in Shanyou 63. With different gmT and ΨleafT relationships, the temperature responses of photosynthetic limitations were surprisingly similar between the two lines, and the photosynthetic rate was highly correlated with gm. With the increasing T, Kleaf increased in Shanyou 63 while it decreased in Yannong 19. The different KleafT relationships were related to different ΨleafT relationships. When excluding the effects of water viscosity and Ψleaf, Kleaf was insensitive to T in both lines. gm and Kleaf were generally not coordinated across different temperatures. This study highlights the importance of Ψleaf on leaf carbon and water exchanges, and the mechanisms for the gmT and KleafT relationships were discussed.  相似文献   

17.
On days with clear skies in late August 2002 diurnal changes in the within-branch heterogeneity of photosynthetic photon flux density at the leaf surface (PPFDs) and leaf temperature (T leaf) were measured at natural leaf orientations in the upper and lower layers of a Fagus crenata crown. The PPFDs and T leaf measurements were converted to branch photosynthesis rates (P B; μmol s−1) using a photosynthetic model proposed by Farquhar et al. (Planta 149:78–90, 1980), an empirical stomatal conductance model suggested by Leuning et al. (Plant Cell Environ 18:339–335, 1995), and the total leaf area of the branches. To evaluate the importance of the variation in PPFDs and T leaf on photosynthesis calculations, P B calculated with the observed variation in PPFDs and T leaf was compared with estimates, based on the average (variation-free) values of PPFDs and T leaf, respectively. In both the layers, daily total P B values obtained with T leaf averaging were very close to those obtained with no averaging because of the weak inflection of the net photosynthesis rate (P n) to T leaf curves in the observed T leaf ranges (24.4–36.5 and 21.9–29.1°C in the upper and lower layers, respectively) and relatively small variation in within-branch T leaf at each time of day. This finding applied across potential climate conditions on fine days in August (T leaf range of 19.4–41.5 and 16.9–34.1°C in the upper and lower layers, respectively) and when the spatial scale was increased from branch to leaf layer, which increased the maximum variation in within-branch T leaf from 7.8 to 9.5°C and 4.5 to 5.5°C in the upper and lower layers, respectively. In contrast, averaging PPFDs caused 25–50% and 41–90% overestimation of daily total P B in the upper and lower layers, respectively, due to the sharp curvature in the PPFDs response curve to P n, and relatively large variation in within-branch PPFDs. Further, it led to overestimation of midday depression of P B in the upper layer, possibly because branch structural acclimation to incident light was neglected. Our results indicate that averaged values of T leaf could be used for the estimation of carbon gain at layer scale throughout August, but spatial variations in PPFDs need to be considered in detail for reliable estimates of carbon gain.  相似文献   

18.
In order to determine how environmental and physiological factors affect leaf gas exchange in a 9-year-old clonal eucalypt plantation (Eucalyptus grandis Hill ex. Maiden hybrids) in the State of Espirito Santo, Brazil, the diurnal patterns of predawn leaf water potential (Ψpd), and leaf gas exchange were monitored from November 1995 to August 1996. Soil water content (Θ) and microclimatic variables were also recorded. Most of the rainfall during the experimental period occurred from October to December 1995 and from March to April 1996, causing a significant variation in Θ and Ψpd. A high positive correlation (r 2=0.92) was observed between Ψpd and Θ measured at 0.3 m depth from the soil surface. During conditions of high soil water availability, the maximum values of stomatal conductance for water vapor (g s) and net photosynthetic rate (A) were over 0.4 mol m–2 s–2 and l5 μmol m–2 s–1, respectively. The results showed that Ψpd and leaf gas exchange of the examined trees were susceptible to changes in the water content of the upper soil layers, where the major concentration of active roots occur. Multiple linear regression analysis indicated that photosynthetic active radiation (Q), vapor pressure deficit (VPD), atmospheric CO2 molar fraction (C a), and Ψpd were the most important factors controlling g s whereas Q and VPD were the main microclimatic variables controlling A. Received: 5 November 1998 / Accepted: 10 November 1999  相似文献   

19.
Sunburn has become one of the major threats to apple fruit production in South Africa and other countries with Mediterranean climate. Some climate‐ameliorating measures have been developed to control sunburn in apples. Effects of the climate‐ameliorating measures, viz. evaporative cooling, Surround® WP and shade net, on leaf gas exchange of a 5‐year‐old orchard of ‘Cripps’ Pink’ apple were investigated during hot summer days in Stellenbosch, South Africa. Evaporative cooling increased net photosynthetic rate (A) and stomatal conductance (gs) because of its lowering of leaf temperature and leaf‐to‐air vapour pressure difference (VPD). Shade net also reduced leaf temperature because of reduction in photosynthetic photon flux density (PPFD). Quantum efficiency of photosynthesis was increased under shade net to compensate for reduced PPFD. Shade net also reduced transpiration rate more than A, resulting in increased midday water‐use efficiency. The diurnal trends of A and gs in the Surround WP and control treatments were similar, indicating limited ameliorative impact of Surround WP. Furthermore, Surround WP typically reduced maximum rate of carboxylation and the light‐saturated rate of electron transport. In all treatments, A decreased by 70% when leaf temperature increased from 35°C to 40°C. In conclusion, all treatments affected leaf photosynthetic gas exchange. Evaporative cooling enhanced leaf A and gs because of distinct ameliorative effects on leaf temperature and VPD. Shade net reduced leaf temperature with no consistent effects on leaf gas exchange attributes. Surround WP had limited or no impact on leaf temperature and negatively affected leaf gas exchange attributes.  相似文献   

20.
We measured the diurnal changes in net photosynthetic rate (P N) and stomatal conductance (g s) of the leaves of a liana, Enkleia malaccensis Griff. (Thymelaeaceae), at the canopy level in the lowland tropical rainforest at Pasoh, Peninsular Malaysia. The measurements were made from a canopy walkway system, 30 m from the ground for 3 d in March 2003. P N increased with increasing photosynthetically active radiation (PAR) before noon, though P N was not enhanced by the strong radiation hit in the afternoon. Plotting g s at saturating PAR (>0.5 mmol m−2 s−1) against the vapour pressure deficit (VPD) failed to reveal a significant correlation between VPD and g s, and g s became very low at VPD >2.5 kPa. The relationship between P N and g s was fitted on the same regression line irrespective of measuring day, indicating that this relationship was not influenced by either VPD or leaf temperature (T L). Therefore, in the liana E. malaccensis, an increase in VPD leads to partial stomatal closure and, subsequently, reductions in P N and the midday depression of P N of this plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号