首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Emergence of drug-resistant mutants of HIV-1 protease is an ongoing problem in the fight against AIDS. The mechanisms governing resistance are both complex and varied. We have determined crystal structures of HIV-1 protease mutants, D30N, K45I, N88D, and L90M complexed with peptide inhibitor analogues of CA-p2 and p2-NC cleavage sites in the Gag-pol precursor in order to study the structural mechanisms underlying resistance. The structures were determined at 1.55-1.9-A resolution and compared with the wild-type structure. The conformational disorder seen for most of the hydrophobic side-chains around the inhibitor binding site indicates flexibility of binding. Eight water molecules are conserved in all 9 structures; their location suggests that they are important for catalysis as well as structural stability. Structural differences among the mutants were analyzed in relation to the observed changes in protease activity and stability. Mutant L90M shows steric contacts with the catalytic Asp25 that could destabilize the catalytic loop at the dimer interface, leading to its observed decreased dimer stability and activity. Mutant K45I reduces the mobility of the flap and the inhibitor and contributes to an enhancement in structural stability and activity. The side-chain variations at residue 30 relative to wild-type are the largest in D30N and the changes are consistent with the altered activity observed with peptide substrates. Polar interactions in D30N are maintained, in agreement with the observed urea sensitivity. The side-chains of D30N and N88D are linked through a water molecule suggesting correlated changes at the two sites, as seen with clinical inhibitors. Structural changes seen in N88D are small; however, water molecules that mediate interactions between Asn88 and Thr74/Thr31/Asp30 in other complexes are missing in N88D.  相似文献   

2.
D Xu  K Baburaj  C B Peterson  Y Xu 《Proteins》2001,44(3):312-320
The structure of vitronectin, an adhesive protein that circulates in high concentrations in human plasma, was predicted through a combination of computational methods and experimental approaches. Fold recognition and sequence-structure alignment were performed using the threading program PROSPECT for each of three structural domains, i.e., the N-terminal somatomedin B domain (residues 1-53), the central region that folds into a four-bladed beta-propeller domain (residues 131-342), and the C-terminal heparin-binding domain (residues 347-459). The atomic structure of each domain was generated using MODELLER, based on the alignment obtained from threading. Docking experiments between the central and C-terminal domains were conducted using the program GRAMM, with limits on the degrees of freedom from a known inter-domain disulfide bridge. The docked structure has a large inter-domain contact surface and defines a putative heparin-binding groove at the inter-domain interface. We also docked heparin together with the combined structure of the central and C-terminal domains, using GRAMM. The predictions from the threading and docking experiments are consistent with experimental data on purified plasma vitronectin pertaining to protease sensitivity, ligand-binding sites, and buried cysteines.  相似文献   

3.
Comparative modeling of the vitamin D receptor three-dimensional structure and computational docking of 1alpha,25-dihydroxyvitamin D(3) into the putative binding pocket of the two deletion mutant receptors: (207-423) and (120-422, Delta [164-207]) are reported and evaluated in the context of extensive mutagenic analysis and crystal structure of holo hVDR deletion protein published recently. The obtained molecular model agrees well with the experimentally determined structure. Six different conformers of 1alpha,25-dihydroxyvitamin D(3) were used to study flexible docking to the receptor. On the basis of values of conformational energy of various complexes and their consistency with functional activity, it appears that 1alpha,25-dihydroxyvitamin D(3) binds the receptor in its 6-s-trans form. The two lowest energy complexes obtained from docking the hormone into the deletion protein (207-423) differ in conformation of ring A and orientation of the ligand molecule in the VDR pocket. 1alpha,25-Dihydroxyvitamin D(3) possessing the A-ring conformation with axially oriented 1alpha-hydroxy group binds receptor with its 25-hydroxy substituent oriented toward the center of the receptor cavity, whereas ligand possessing equatorial conformation of 1alpha-hydroxy enters the pocket with A ring directed inward. The latter conformation and orientation of the ligand is consistent with the crystal structure of hVDR deletion mutant (118-425, Delta [165-215]). The lattice model of rVDR (120-422, Delta [164-207]) shows excellent agreement with the crystal structure of the hVDR mutant. The complex obtained from docking the hormone into the receptor has lower energy than complexes for which homology modeling was used. Thus, a simple model of vitamin D receptor with the first two helices deleted can be potentially useful for designing a general structure of ligand, whereas the advanced lattice model is suitable for examining binding sites in the pocket.  相似文献   

4.
The active site of heme catalases is buried deep inside a structurally highly conserved homotetramer. Channels leading to the active site have been identified as potential routes for substrate flow and product release, although evidence in support of this model is limited. To investigate further the role of protein structure and molecular channels in catalysis, the crystal structures of four active site variants of catalase HPII from Escherichia coli (His128Ala, His128Asn, Asn201Ala, and Asn201His) have been determined at approximately 2.0-A resolution. The solvent organization shows major rearrangements with respect to native HPII, not only in the vicinity of the replaced residues but also in the main molecular channel leading to the heme distal pocket. In the two inactive His128 variants, continuous chains of hydrogen bonded water molecules extend from the molecular surface to the heme distal pocket filling the main channel. The differences in continuity of solvent molecules between the native and variant structures illustrate how sensitive the solvent matrix is to subtle changes in structure. It is hypothesized that the slightly larger H(2)O(2) passing through the channel of the native enzyme will promote the formation of a continuous chain of solvent and peroxide. The structure of the His128Asn variant complexed with hydrogen peroxide has also been determined at 2.3-A resolution, revealing the existence of hydrogen peroxide binding sites both in the heme distal pocket and in the main channel. Unexpectedly, the largest changes in protein structure resulting from peroxide binding are clustered on the heme proximal side and mainly involve residues in only two subunits, leading to a departure from the 222-point group symmetry of the native enzyme. An active role for channels in the selective flow of substrates through the catalase molecule is proposed as an integral feature of the catalytic mechanism. The Asn201His variant of HPII was found to contain unoxidized heme b in combination with the proximal side His-Tyr bond suggesting that the mechanistic pathways of the two reactions can be uncoupled.  相似文献   

5.
Adenosine triphosphate (ATP) plays an essential role in energy transfer within the cell. In the form of NAD, adenine participates in multiple redox reactions. Phosphorylation and ATP-hydrolysis reactions have key roles in signal transduction and regulation of many proteins, especially enzymes. In each cell, proteins with many different functions use adenine and its derivatives as ligands; adenine, of course, is present in DNA and RNA. We show that an adenine binding motif, which differs according to the backbone chain direction of a loop that binds adenine (and in one variant by the participation of an aspartate side-chain), is common to many proteins; it was found from an analysis of all adenylate-containing protein structures from the Protein Data Bank. Indeed, 224 protein-ligand complexes (86 different proteins) from a total of 645 protein structure files bind ATP, CoA, NAD, NADP, FAD, or other adenine-containing ligands, and use the same structural elements to recognize adenine, regardless of whether the ligand is a coenzyme, cofactor, substrate, or an allosteric effector. The common adenine-binding motif shown in this study is simple to construct. It uses only (1) backbone polar interactions that are not dependent on the protein sequence or particular properties of amino acid side-chains, and (2) nonspecific hydrophobic interactions. This is probably why so many different proteins with different functions use this motif to bind an adenylate-containing ligand. The adenylate-binding motif reported is present in "ancient proteins" common to all living organisms, suggesting that adenine-containing ligands and the common motif for binding them were exploited very early in evolution. The geometry of adenine binding by this motif mimics almost exactly the geometry of adenine base-pairing seen in DNA and RNA.  相似文献   

6.
Streptomyces griseus aminopeptidase (SGAP) is a double-zinc exopeptidase with a high preference toward large hydrophobic amino-terminus residues. It is a monomer of a relatively low molecular weight (30 kDa), it is heat stable, it displays a high and efficient catalytic turnover, and its activity is modulated by calcium ions. The small size, high activity, and heat stability make SGAP a very attractive enzyme for various biotechnological applications, among which is the processing of recombinant DNA proteins and fusion protein products. Several free amino acids, such as phenylalanine, leucine, and methionine, were found to act as weak inhibitors of SGAP and hence were chosen for structural studies. These inhibitors can potentially be regarded as product analogs because one of the products obtained in a normal enzymatic reaction is the cleaved amino terminal amino acid of the substrate. The current study includes the X-ray crystallographic analysis of the SGAP complexes with methionine (1.53 A resolution), leucine (1.70 A resolution), and phenylalanine (1.80 A resolution). These three high-resolution structures have been used to fully characterize the SGAP active site and to identify some of the functional groups of the enzyme that are involved in enzyme-substrate and enzyme-product interactions. A unique binding site for the terminal amine group of the substrate (including the side chains of Glu131 and Asp160, as well as the carbonyl group of Arg202) is indicated to play an important role in the binding and orientation of both the substrate and the product of the catalytic reaction. These studies also suggest that Glu131 and Tyr246 are directly involved in the catalytic mechanism of the enzyme. Both of these residues seem to be important for substrate binding and orientation, as well as the stabilization of the tetrahedral transition state of the enzyme-substrate complex. Glu131 is specifically suggested to function as a general base during catalysis by promoting the nucleophilic attack of the zinc-bound water/hydroxide on the substrate carbonyl carbon. The structures of the three SGAP complexes are compared with recent structures of three related aminopeptidases: Aeromonas proteolytica aminopeptidase (AAP), leucine aminopeptidase (LAP), and methionine aminopeptidase (MAP) and their complexes with corresponding inhibitors and analogs. These structural results have been used for the simulation of several species along the reaction coordinate and for the suggestion of a general scheme for the proteolytic reaction catalyzed by SGAP.  相似文献   

7.
K Tappura 《Proteins》2001,44(3):167-179
An adjustable-barrier dihedral angle potential was added as an extension to a novel, previously presented soft-core potential to study its contribution to the efficacy of the search of the conformational space in molecular dynamics. As opposed to the conventional soft-core potential functions, the leading principle in the design of the new soft-core potential, as well as of its extension, the soft-core and adjustable-barrier dihedral angle (SCADA) potential (referred as the SCADA potential), was to maintain the main equilibrium properties of the original force field. This qualifies the methods for a variety of a priori modeling problems without need for additional restraints typically required with the conventional soft-core potentials. In the present study, the different potential energy functions are applied to the problem of predicting loop conformations in proteins. Comparison of the performance of the soft-core and SCADA potential showed that the main hurdles for the efficient sampling of the conformational space of (loops in) proteins are related to the high-energy barriers caused by the Lennard-Jones and Coulombic energy terms, and not to the rotational barriers, although the conformational search can be further enhanced by lowering the rotational barriers of the dihedral angles. Finally, different evaluation methods were studied and a few promising criteria found to distinguish the near-native loop conformations from the wrong ones.  相似文献   

8.
Drug resistance to HIV-1 protease involves the accumulation of multiple mutations in the protein. We investigate the role of these mutations by using molecular dynamics simulations that exploit the influence of the native-state topology in the folding process. Our calculations show that sites contributing to phenotypic resistance of FDA-approved drugs are among the most sensitive positions for the stability of partially folded states and should play a relevant role in the folding process. Furthermore, associations between amino acid sites mutating under drug treatment are shown to be statistically correlated. The striking correlation between clinical data and our calculations suggest a novel approach to the design of drugs tailored to bind regions crucial not only for protein function, but for folding as well.  相似文献   

9.
10.
Secondary structures of proteins were studied by recurrence quantification analysis (RQA). High-resolution, 3-dimensional coordinates of alpha-carbon atoms comprising a set of 68 proteins were downloaded from the Protein Data Bank. By fine-tuning four recurrence parameters (radius, line, residue, separation), it was possible to establish excellent agreement between percent contribution of alpha-helix and beta-sheet structures determined independently by RQA and that of the DSSP algorithm (Define Secondary Structure of Proteins). These results indicate that there is an equivalency between these two techniques, which are based upon totally different pattern recognition strategies. RQA enhances qualitative contact maps by quantifying the arrangements of recurrent points of alpha carbons close in 3-dimensional space. For example, the radius was systematically increased, moving the analysis beyond local alpha-carbon neighborhoods in order to capture super-secondary and tertiary structures. However, differences between proteins could only be detected within distances up to about 6-11 A, but not higher. This result underscores the complexity of alpha-carbon spacing when super-secondary structures appear at larger distances. Finally, RQA-defined secondary structures were found to be robust against random displacement of alpha carbons upwards of 1 A. This finding has potential import for the dynamic functions of proteins in motion.  相似文献   

11.
We have used NMR methods to characterize the structure and dynamics of ribonuclease Sa in solution. The solution structure of RNase Sa was obtained using the distance constraints provided by 2,276 NOEs and the C6-C96 disulfide bond. The 40 resulting structures are well determined; their mean pairwise RMSD is 0.76 A (backbone) and 1.26 A (heavy atoms). The solution structures are similar to previously determined crystal structures, especially in the secondary structure, but exhibit new features: the loop composed of Pro 45 to Ser 48 adopts distinct conformations and the rings of tyrosines 51, 52, and 55 have reduced flipping rates. Amide protons with greatly reduced exchange rates are found predominantly in interior beta-strands and the alpha-helix, but also in the external 3/10 helix and edge beta-strand linked by the disulfide bond. Analysis of (15)N relaxation experiments (R1, R2, and NOE) at 600 MHz revealed five segments, consisting of residues 1-5, 28-31, 46-50, 60-65, 74-77, retaining flexibility in solution. The change in conformation entropy for RNase SA folding is smaller than previously believed, since the native protein is more flexible in solution than in a crystal.  相似文献   

12.
The structure of the bark lectin RPbAI (isoform A4) from Robinia pseudoacacia has been determined by protein crystallography both in the free form and complexed with N-acetylgalactosamine. The free form is refined at 1.80 A resolution to an R-factor of 18.9% whereas the complexed structure has an R-factor of 19.7% at 2.05 A resolution. Both structures are compared to each other and to other available legume lectin structures. The polypeptide chains of the two structures exhibit the characteristic legume lectin tertiary fold. The quaternary structure resembles that of the Phaseolus vulgaris lectin, the soybean agglutinin, and the Dolichos biflorus lectin, but displays some unique features leading to the extreme stability of this lectin.  相似文献   

13.
Ron and Met are structurally related receptor tyrosine kinases that elicit a complex biological response leading to invasive growth. Naturally occurring point mutations activate the Met kinase in papillary renal carcinomas (MET(PRC) mutations). By site-directed mutagenesis, we generated homologous amino acid substitutions in the Ron kinase domain and analyzed the biochemical and biological properties of the mutant receptors. Among the mutations studied, D(1232)H and M(1254)T displayed transforming activity in NIH3T3 cells, inducing focus formation and anchorage-independent growth. The D(1232)H and M(1254)T substitutions resulted in increased Ron autophosphorylation both in vivo and in vitro and constitutive binding to intracellular signal transducers. Both mutations yielded a dramatic increase in catalytic efficiency, indicating a direct correlation between kinase activity and oncogenic potential. Molecular modeling of the Ron D(1232)H mutation suggests that this single amino acid substitution favors the transition of the kinase from the inactive to the active state. These data demonstrate that point mutations can confer transforming activity to the Ron receptor and show that RON is a potential oncogene.  相似文献   

14.
The ZAP-70 tyrosine kinase plays a critical role in T cell activation and the immune response and therefore is a logical target for immunomodulatory therapies. Although the crystal structure of the tandem Src homology-2 domains of human ZAP-70 in complex with a peptide derived from the zeta subunit of the T cell receptor has been reported (Hatada, M. H., Lu, X., Laird, E. R., Green, J., Morgenstern, J. P., Lou, M., Marr, C. S., Phillips, T. B., Ram, M. K., Theriault, K., Zoller, M. J., and Karas, J. L. (1995) Nature 377, 32-38), the structure of the kinase domain has been elusive to date. We crystallized and determined the three-dimensional structure of the catalytic subunit of ZAP-70 as a complex with staurosporine to 2.3 A resolution, utilizing an active kinase domain containing residues 327-606 identified by systematic N- and C-terminal truncations. The crystal structure shows that this ZAP-70 kinase domain is in an active-like conformation despite the lack of tyrosine phosphorylation in the activation loop. The unique features of the ATP-binding site, identified by structural and sequence comparison with other kinases, will be useful in the design of ZAP-70-selective inhibitors.  相似文献   

15.
Src protein-tyrosine kinase structure and regulation   总被引:2,自引:0,他引:2  
Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPalpha displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the alphaD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu(4)Tyr).  相似文献   

16.
Csk (C-terminal Src kinase), a protein tyrosine kinase, consisting of the Src homology 2 and 3 (SH2 and SH3) domains and a catalytic domain, phosphorylates the C-terminal tail of Src-family members, resulting in downregulation of the Src family kinase activity. The Src family kinases share 37 % homology with Csk but, unlike Src-family kinases, the catalytic domain of Csk alone is weakly active and can be stimulated in trans by interacting with the Csk-SH3 domain, suggesting a mode of intradomain regulation different from that of Src family kinases. The structural determinants of this intermolecular interaction were studied by nuclear magnetic resonance (NMR) and site-directed mutagenesis techniques. Chemical shift perturbation of backbone nuclei (H' and (15)N) has been used to map the Csk catalytic domain binding site on the Csk-SH3. The experimentally determined interaction surface includes three structural elements: the N-terminal tail, a small part of the RT-loop, and the C-terminal SH3-SH2 linker. Site-directed mutagenesis revealed that mutations in the SH3-SH2 linker of the wild-type Csk decrease Csk kinase activity up to fivefold, whereas mutations in the RT-loop left Csk kinase activity largely unaffected. We conclude that the SH3-SH2 linker plays a major role in the activation of the Csk catalytic domain.  相似文献   

17.
In addition to the C-terminal catalytic domain, Csk is a protein tyrosine kinase that has an N-terminal regulatory region that contains SH3 and SH2 domains. The role this region plays relative to the function of the catalytic domain is not clear. To study its role, we introduced either deletion or site-specific mutations within this region and analyzed the effect of such mutations on the catalytic activity of Csk and its ability to phosphorylate/inactivate Src protein tyrosine kinase, its physiological substrate in the cell. Deletion of the SH3 domain and the SH2 domain resulted in reductions of kinase activity by 70 and 96%, respectively. Mutations within the SH2 domain that abolished its ability to bind phosphotyrosine did not result in a significant loss of kinase activity. Mutation of Ser78 to Asp, located between the SH3 and the SH2 domains, resulted in a reduction of over 90% of the catalytic activity. The reduction in specific activity is not the result of any apparent physical instability of the mutants. Kinetic analyses indicate that the mutations did not affect the Km values for ATP-Mg or the polypeptide substrate. The ability of the mutants to phosphorylate and inactivate Src is directly correlated to their kinase activity. These results indicate that the regulatory region is important in optimizing the kinase activity of the catalytic domain, but apparently plays no direct or specific role in substrate recognition.  相似文献   

18.
We examined the biochemical effects of arsenic on the activities of RET proto‐oncogene (c‐RET protein tyrosine kinases) and RET oncogene (RET‐MEN2A and RET‐PTC1 protein tyrosine kinases) products. Arsenic activated c‐RET kinase with promotion of disulfide bond‐mediated dimerization of c‐RET protein. Arsenic further activated RET‐MEN2A kinase, which was already 3‐ to 10‐fold augmented by genetic mutation compared with c‐RET kinase activity, with promotion of disulfide bond‐mediated dimerization of RET‐MEN2A protein (superactivation). Arsenic also increased extracellular domain‐deleted RET‐PTC1 kinase activity with promotion of disulfide bond‐mediated dimerization of RET‐PTC1 protein. Arsenic increased RET‐PTC1 kinase activity with cysteine 365 (C365) replaced by alanine with promotion of dimer formation but not with cysteine 376 (C376) replaced by alanine. Our results suggest that arsenic‐mediated regulation of RET kinase activity is dependent on conformational change of RET protein through modulation of a special cysteine sited at the intracellular domain in RET protein (relevant cysteine of C376 in RET‐PTC1 protein). Moreover, arsenic enhanced the activity of immunoprecipitated RET protein with increase in thiol‐dependent dimer formation. As arsenic (14.2 µM) was detected in the cells cultured with arsenic (100 µM), direct association between arsenic and RET in the cells might modulate dimer formation. Thus, we demonstrated a novel redox‐linked mechanism of activation of arsenic‐mediated RET proto‐oncogene and oncogene products. J. Cell. Biochem. 110: 399–407, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor that mediates multiple functions such as migration, cycling and survival by binding to hepatocyte growth factor (HGF). Dysregulation of MET through inappropriate expression or mutation has been shown to play an important role in human cancers. Furthermore, inherited mutations in MET are known to contribute to the development of gastric and renal cancer in humans. Lastly, mouse models of MET mutations lead to the development of a wide variety of cancers including lymphomas, sarcomas and some forms of carcinoma. In the process of cloning canine MET, a novel germline point mutation was found in the juxtamembrane domain (G966S) in two of the templates used for cloning, both of which were derived from Rottweiler dogs, a breed believed to be at high risk for the development of several cancers. Screening of germline DNA from a variety of breeds revealed that this mutation was present in approximately 70% of Rottweiler dogs and <5% of all other breeds examined, suggesting a breed-specific heritable mutation. Stable transfection of the G966S mutant form of MET into NIH3T3 cells resulted in enhanced baseline scattering and migration of the cells, which was further increased in the presence of HGF. This study supports the notion that particular dog breeds may carry germline mutations that contribute to high rates of cancer in a manner similar to heritable, cancer-associated mutations in humans.  相似文献   

20.
Using the specific Abl tyrosine kinase inhibitor STI 571, we purified unphosphorylated murine type IV c-Abl and measured the kinetic parameters of c-Abl tyrosine kinase activity in a solution with a peptide-based assay. Unphosphorylated c-Abl exhibited substantial peptide kinase activity with K(m) of 204 microm and V(max) of 33 pmol min(-1). Contrary to previous observations using immune complex kinase assays, we found that a transforming c-Abl mutant with a Src homology 3 domain point mutation (P131L) had significantly (about 6-fold) higher intrinsic kinase activity than wild-type c-Abl (K(m) = 91 microm, V(max) = 112 pmol min(-1)). Autophosphorylation stimulated the activity of wild-type c-Abl about 18-fold and c-Abl P131L about 3.6-fold, resulting in highly active kinases with similar catalytic rates. The autophosphorylation rate was dependent on Abl protein concentration consistent with an intermolecular reaction. A tyrosine to phenylalanine mutation (Y412F) at the c-Abl residue homologous to the c-Src catalytic domain autophosphorylation site impaired the activation of wild-type c-Abl by 90% but reduced activation of c-Abl P131L by only 45%. Mutation of a tyrosine (Tyr-245) in the linker region between the Src homology 2 and catalytic domains that is conserved among the Abl family inhibited the autophosphorylation-induced activation of wild-type c-Abl by 50%, whereas the c-Abl Y245F/Y412F double mutant was minimally activated by autophosphorylation. These results support a model where c-Abl is inhibited in part through an intramolecular Src homology 3-linker interaction and stimulated to full catalytic activity by sequential phosphorylation at Tyr-412 and Tyr-245.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号