首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Our aim was to review recent studies that address the increased risk of atherosclerosis and coronary heart disease in patients with rheumatoid arthritis and systemic lupus erythematosus. We examine the strength of this association, how inflammation mediates this increased risk and what impact therapies may have. RECENT FINDINGS: Atherosclerosis is more prevalent and accelerated in both conditions. Indeed the process may actually precede the onset of clinical inflammatory disease. Metabolic alterations include insulin resistance and the generation of proinflammatory HDL. In addition, inflammatory mechanisms central to both rheumatoid arthritis and systemic lupus erythematosus such as macrophage activation, interferon-1 and complement deficiency may contribute to atherogenesis. There is still no consensus as to the value of primary preventive strategies in these conditions. However, drugs such as hydroxychloroquine seem to modify coronary heart disease risk and may improve survival. The recently developed antitumour necrosis factor drugs may also reduce coronary heart disease risk but biomarker studies to date have been inconclusive. SUMMARY: There is an urgent need for clinical trials to examine both the lipid-lowering and inflammatory hypotheses of atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Novel targeted therapies in development may also have a major impact on future coronary heart disease risk in these conditions.  相似文献   

2.
In the present study, we have investigated the in vitro effect of calcitonin-related peptide (CGRP), neuropeptide Y (NPY), substance P (SP) and vasoactive intestinal peptide (VIP) at concentrations of 10(-8), 10(-9) and 10(-10) M on the production of different proinflammatory cytokines or chemokines such as IL-1beta, IL-6 and TNFalpha by peripheral whole blood cells from patients with rheumatoid arthritis, as well as from osteoarthritis patients studied as a control group without immunoinflammatory background. We have found that CGRP, NPY, SP and VIP stimulated significantly the production of those cytokines and chemokines in rheumatoid arthritis patients. In general, the stimulation was higher at the 10(-9) M concentration, with SP and VIP, and in rheumatoid arthritis patients compared to osteoarthritis ones. Neuropeptides did not significantly modify the LPS-induced cytokine production by whole blood cells. The results indicate that physiological concentrations of the neuropeptides studied can modulate the inflammatory and immunological response, stimulating significantly the production of inflammatory cytokines by human whole blood cells in rheumatoid arthritis patients, as well as, in a minor way, in osteoarthritis patients.  相似文献   

3.
Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis (RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines (e.g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-γ at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA.  相似文献   

4.
Rheumatoid arthritis (RA) associates with increased cardiovascular mortality. This appears to be predominantly due to ischaemic causes, such as myocardial infarction and congestive heart failure. The higher prevalence of cardiac ischaemia in RA is thought to be due to the accelerated development of atherosclerosis. There are two main reasons for this, which might be inter-related: the systemic inflammatory load, characteristic of RA; and the accumulation in RA of classical risk factors for coronary heart disease, which is reminiscent of the metabolic syndrome. We describe and discuss in the context of RA the involvement of local and systemic inflammatory processes in the development and rupture of atherosclerotic plaques, as well as the role of individual risk factors for coronary heart disease. We also present the challenges facing the clinical and scientific communities addressing this problem, which is receiving increasing attention.  相似文献   

5.
Many studies have shown that modulation of cytokine function is effective in ameliorating symptoms of rheumatoid arthritis. Neuropeptides have recently been shown to have powerful effects on the production and release of cytokines and have also been shown to exert potent proinflammatory and anti-inflammatory effects in animal models of inflammatory diseases. An analysis of cytokine and neuropeptide content of synovial fluid from patients with rheumatoid arthritis has revealed a significant correlation between two neuropeptides, bombesin/gastrin-releasing peptide and substance P, and the proinflammatory cytokine interleukin-6 as well as the erythrocyte sedimentation rate. These findings provide further evidence for a role of neuropeptides and cytokines in the pathophysiology of rheumatoid arthritis, as well as suggesting additional approaches for the development of novel therapeutic interventions.  相似文献   

6.
Cytokines regulate a broad range of inflammatory processes that are implicated in the pathogenesis of rheumatoid arthritis. In rheumatoid joints, it is well known that an imbalance between pro- and anti-inflammatory cytokine activities favours the induction of autoimmunity, chronic inflammation and thereby joint damage. However, it remains less clear how cytokines are organized within a hierarchical regulatory network, and therefore which cytokines may be the best targets for clinical intervention a priori. Here, we discuss the crucial effector function of cytokines in the immunological processes that are central to the pathogenesis of rheumatoid arthritis.  相似文献   

7.
8.
Our previous reports revealed that calpain has proteoglycanase activity and exists in synovial fluid in osteoarthritis and rheumatoid arthritis. We examined the effects of cytokines on expression of the calpain-calpastatin system in fibroblastic synoviocytes (FLS). Primary cultures of human FLS from osteoarthritis (OA) and rheumatoid arthritis (RA) patients were stimulated with inflammatory cytokines and the amounts of m-calpain and calpastatin mRNAs expressed were determined by Northern blotting. Northern blots were subjected to computerized densitometer and band intensities were determined. Interleukin-1 (IL-1) down-regulated m-calpain and tissue-type calpastatin mRNA expression in OA and RA FLS. In RA FLS, although IL-6 did not alter m-calpain mRNA expression, IL-1 + tumor necrosis factor (TNF) and IL-1 + transforming growth factor (TGF) down-regulated m-calpain mRNA expression. These results provide new information about the effects of inflammatory cytokines on calpain and calpastatin system in OA and RA pathology.  相似文献   

9.
In order to develop an anti-NF-kappaB siRNA as a novel class of anti-inflammatory drug, we have isolated a highly efficient siRNA targeting the p65 (RelA) subunit of NF-kappaB, hereafter named REL1096. To determine whether down-regulation of p65 by REL1096 can block the induction of inflammatory cytokines after treatment with tumor necrosis factor-alpha (TNF-alpha), human primary fibroblast-like synoviocytes were isolated from patients with rheumatoid arthritis. When treated with REL1096, the TNF-mediated induction of downstream target genes such as inflammatory cytokines, chemokines, and anti-apoptosis genes was drastically inhibited. To enhance the inhibitory effect of REL1096, cells were treated with siRNA targeting the p50 subunit of NF-kappaB together with REL1096. In addition to effective downregulation of inflammatory cytokines, knockdown of both p65 and p50 resulted in much more extensive apoptosis when compared to cells treated with either REL1096 or p50-siRNA alone. Thus, our results provide evidence for the potential use of siRNA targeting NF-kappaB as an effective means to treat rheumatoid arthritis. In addition to effective amelioration of synovial inflammation by downregulation of inflammatory cytokines, increased apoptosis by dual knockdown of p65 and p50 may prove advantageous in preventing invasiveness and destructiveness of hyperplastic synoviocytes.  相似文献   

10.
15-Lipoxygenase (15-LOX) is involved in many pathological processes. The aim of this study is to examine the role of 15-LOX in the matrix metalloproteinase (MMP) expression and inflammatory arthritis. It was found that treatment of 15-LOX downstream product of 15-(S)-HETE (15-S-hydroxyeicosatetraenoic acid) increased the mRNA and protein levels of MMP-2 in rheumatoid arthritis synovial fibroblast (RASF) derived from rheumatoid arthritis patients. The enhancement effect of 15-(S)-HETE was antagonized by the addition of LY294002 (PI3K inhibitor) and PDTC (NF-κB inhibitor). Treatment of 15-(S)-HETE increased the phosphorylation of AKT, nuclear translocation of p65 and the breakdown of IκBα. TNF-α and IL-1β are the key cytokines involved in arthritis and also increase the activity of MMP-2 in RASF, which was antagonized by pretreatment with 15-LOX inhibitor PD146176 or knockdown of 15-LOX. It was also found that these two cytokines increased the expression of 15-LOX in RASF. Treatment of glucocorticoid but not NSAIDs inhibited 15-(S)-HETE-induced expression of MMP-2. In comparison with wild-type mice, adjuvant-induced arthritis and MMP-2 expression in synovial membrane were markedly inhibited in 15-LOX knockout (KO) mice. These results indicate that 15-LOX plays an important role in the disease progression of arthritis and may be involved in the inflammatory action induced by TNF-α and IL-1β. 15-LOX is thus a good target for developing drugs in the treatment of inflammatory arthritis.  相似文献   

11.
OBJECTIVE--To determine whether genetic factors associated with established rheumatoid arthritis could, in combination with rheumatoid factor, predict the development of radiological erosions in patients with early symmetrical (rheumatoid-like) arthritis. DESIGN--Prospective study. SETTING--Teaching hospital, early arthritis clinic. SUBJECTS--Forty nine patients with symmetrical polyarthritis attending the early arthritis clinic. MAIN OUTCOME MEASURES--Conserved sequence of DR beta third allelic hypervariable region, sulphoxidation capacity, rheumatoid factor, and development of radiologically determined bone erosions. RESULTS--None of the 49 patients had radiological erosions at presentation but 25 developed these by four years. Patients with the conserved class II major histocompatibility complex (third allelic hypervariable of DR beta 1) genes associated with rheumatoid arthritis had a relative risk for the development of erosions of 1.9 (95% confidence interval 0.8 to 4.5). For poor sulphoxidation the risk was 2.5 (1.1 to 5.6) and for the presence of rheumatoid factor 1.8 (0.9 to 3.7). Of the 33 patients who had two or three of these risk factors, 24 developed erosions, with a relative risk of 11.6 (1.7 to 78.5) compared with only one of the 16 individuals with no or one risk factor. CONCLUSIONS--This preliminary study shows that by using these stable markers it is possible to make clinically useful predictions of outcome in patients with early symmetrical inflammatory arthritis.  相似文献   

12.
Leukocyte infiltration during acute and chronic inflammation is regulated by exogenous and endogenous factors, including cytokines, chemokines and proteases. Stimulation of fibroblasts and human microvascular endothelial cells with the inflammatory cytokines interleukin-1beta (IL-1beta) or tumour necrosis factor alpha (TNF-alpha) combined with either interferon-alpha (IFN-alpha), IFN-beta or IFN-gamma resulted in a synergistic induction of the CXC chemokine CXCL10, but not of the neutrophil chemoattractant CXCL8. In contrast, simultaneous stimulation with different IFN types did not result in a synergistic CXCL10 protein induction. Purification of natural CXCL10 from the conditioned medium of fibroblasts led to the isolation of CD26/dipeptidyl peptidase IV-processed CXCL10 missing two NH2-terminal residues. In contrast to intact CXCL10, NH2-terminally truncated CXCL10(3-77) did not induce extracellular signal-regulated kinase 1/2 or Akt/protein kinase B phosphorylation in CXC chemokine receptor 3-transfected cells. Together with the expression of CXCL10, the expression of membrane-bound CD26/dipeptidyl peptidase IV was also upregulated in fibroblasts by IFN-gamma, by IFN-gamma plus IL-1beta or by IFN-gamma plus TNF-alpha. This provides a negative feedback for CXCL10-dependent chemotaxis of activated T cells and natural killer cells. Since TNF-alpha and IL-1beta are implicated in arthritis, synovial concentrations of CXCL8 and CXCL10 were compared in patients suffering from crystal arthritis, ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. All three groups of autoimmune arthritis patients (ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis) had significantly increased synovial CXCL10 levels compared with crystal arthritis patients. In contrast, compared with crystal arthritis, only rheumatoid arthritis patients, and not ankylosing spondylitis or psoriatic arthritis patients, had significantly higher synovial CXCL8 concentrations. Synovial concentrations of the neutrophil chemoattractant CXCL8 may therefore be useful to discriminate between autoimmune arthritis types.  相似文献   

13.
There is significant evidence arising from experimental models that autoantibodies play a key role in the pathogenesis of inflammatory arthritis. In addition to autoantibody production, B cells efficiently present antigen to T cells, produce soluble factors, including cytokines and chemokines, and form B cell aggregates in the target organ of rheumatoid arthritis. In this review we analyze the multifaceted role that B cells play in the pathogenesis of rheumatoid arthritis and discuss how this information can be used to guide more specific targeting of B cells for the therapy of this disease.  相似文献   

14.
Complex clinical-laboratory investigation of children with congestive heart failure developed on the basis of dilated cardiomyopathy and hypertrophic cardiomyopathy has been carried out. The development of congestive heart failure in children with cardiomyopathy was accompanied by changes in activity of creatine phosphokinase, MB isoform of creatine phosphokinase, and also blood serum lactate, neopterin, TNF-α, interleukin-2 (IL-2), interleukin-6 (IL-6), and the soluble receptors for IL-2 and IL-6 (sIL-2R, sIL-6R). The energy deficit in patients with congestive heart failure is associated with pronounced impairments of expression of neopterin, TNF-α, IL-2, IL-6 and their receptors. The role of cytokines in formation of dysregulation processes is analyzed at the level of intercellular and organ local interactions. A cascade of multiple biochemical and molecular processes including impairments of membrane integrity and ion transport, apoptosis, proteolysis followed by fibrosis of myocardium finally cause myocardial remodeling, the development, chronization and progression of congestive heart failure in children with cardiomyopathy.  相似文献   

15.
A variety of seemingly unrelated clinical conditions manifest the same effects on the heart. These effects include: (1) reversible myocardial dysfunction, (2) beta-adrenergic desensitization, and (3) activation of inflammatory mediators. We provide evidence supporting a role for cytokines, mitogen activated protein kinases (MAP kinases), and nitric oxide (NO) as common mediators of reversible myocardial dysfunction and beta-adrenergic desensitization. Data from animal models and human studies support a pathogenic role for these inflammatory mediators in ischemic as well as non-ischemic myocardial dysfunction. It is suggested that compensatory cellular programs are activated to provide short-term protection from brief periods of ischemia and infection. Continuous activation of these compensatory pathways leads to cardiomyopathy and chronic (congestive) heart failure. Elucidating the signaling pathways involved has the potential to provide the opportunity to exploit the cardioprotective advantages of these agents without bearing the burden of excessive stimulation.  相似文献   

16.
Patients with congestive heart failure have a significant risk of stroke due to thromboembolism from the dilated left ventricle. Two relatively small trials suggest that oral anticoagulation with vitamin-K antagonists may reduce this risk when compared with placebo, aspirin or clopidogrel. However, more studies are eagerly awaited. So far, physicians seeing patients with heart failure should decide who needs antithrombotic prophylaxis on a case-by-case basis, especially since most heart failure patients have significant comorbidity precluding the use of oral anticoagulant.  相似文献   

17.
Arthritis is a multifactorial disease for which current therapeutic intervention with high efficacy remains challenging. Arthritis predominately affects articular joints, and cartilage deterioration and inflammation are key characteristics. Current therapeutics targeting inflammatory responses often cause severe side effects in patients because of the systemic inhibition of cytokines or other global immunosuppressive activities. Furthermore, a lack of primary response or failure to sustain a response to treatment through acquired drug resistance is an ongoing concern. Nevertheless, treatments such as disease-modifying anti-rheumatic drugs, biological agents, and corticosteroids have revealed promising outcomes by decreasing pain and inflammation in patients and in some cases reducing radiographic progression of the disease. Emerging and anecdotal therapeutics with anti-inflammatory activity, alongside specific inhibitors of the A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 repeats (ADAMTS) cartilage-degrading aggrecanases, provide promising additions to current arthritis treatment strategies. Thus, it is paramount that treatment strategies be optimized to increase efficacy, reduce debilitating side effects, and improve the quality of life of patients with arthritis. Here, we review the current strategies that attempt to slow or halt the progression of osteoarthritis and rheumatoid arthritis, providing an up-to-date summary of pharmaceutical treatment strategies and side effects. Importantly, we highlight their potential to indirectly regulate ADAMTS aggrecanase activity through their targeting of inflammatory mediators, thus providing insight into a mechanism by which they might inhibit cartilage destruction to slow or halt radiographic progression of the disease. We also contrast these with anecdotal or experimental administration of statins that could equally regulate ADAMTS aggrecanase activity and are available to arthritis sufferers worldwide. Finally, we review the current literature regarding the development of synthetic inhibitors directed toward the aggrecanases ADAMTS4 and ADAMTS5, a strategy that might directly inhibit cartilage destruction and restore joint function in both rheumatoid arthritis and osteoarthritis.  相似文献   

18.
The intercellular adhesion molecule-1 (ICAM-1) was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1alpha, TNFalpha and IFNgamma or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus.  相似文献   

19.
TNF is a Janus-faced protein. It possesses impressive anti-tumor activities, but it is also one of the strongest known pro-inflammatory cytokines, which hampers its use as a systemic anti-cancer agent. TNF has been shown to play a detrimental role in inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease. Glucocorticoids are strongly anti-inflammatory and exert their therapeutic effects through binding to their receptor, the glucocorticoid receptor. Therefore, glucocorticoids have been used for over half a century for the treatment of inflammatory diseases. However, many patients are or become resistant to the therapeutic effects of glucocorticoids. Inflammatory cytokines have been suggested to play an important role in this steroid insensitivity or glucocorticoid resistance. This review aims to highlight the mechanisms of mutual inhibition between TNF and GR signaling pathways.  相似文献   

20.
Experimental data suggest that pro-inflammatory cytokines such as interleukin 1beta (IL-1beta), interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-alpha) are important in the pathogenesis of osteoporosis in rheumatoid arthritis. Therefore we compared the production of these cytokines by monocytes in 10 rheumatoid arthritis patients and 10 controls. Cytokine levels in rheumatoid arthritis patients were related to disease activity parameters, bone mineral density (BMD) corrected for age and sex (Z scores) and osteocalcin as a laboratory parameter of bone remodelling. Cytokines were determined by a flow cytometrical technique. There was a tendency for higher IL-1beta levels in patients compared with controls. A positive correlation between erythrocyte sedimentation rate and spontaneous production of monocytic cytokines was found. Z scores of the lumbar spine showed a negative correlation with spontaneous production of IL-1beta and IL-6. Plasma osteocalcin levels were positively correlated with spontaneous production of IL-1beta, IL-6 and TNF-alpha. In conclusion, the correlation of the levels of these cytokines with parameters of bone metabolism and osteoporosis suggest that especially IL-1beta and IL-6 are associated with more pronounced osteoporosis in active rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号