首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful application of antisense oligonucleotides (ODNs) in cell biology and therapy will depend on the ease of design, efficiency of (intra)cellular delivery, ODN stability, and target specificity. Equally essential is a detailed understanding of the mechanism of antisense action. To address these issues, we employed phosphorothioate ODNs directed against specific regions of the mRNA of the serotonin 5HT1A receptor, governed by sequence and structure. We demonstrate that rather than various intracellular factors, the gene sequence per se primarily determines the antisense effect, since 5HT1a autoreceptors expressed in RN46A cells, postsynaptic receptors expressed in SN48 cells, and receptors overexpressed in LLP-K1 cells are all efficiently downregulated following ODN delivery via a cationic lipid delivery system. The data also reveal that the delivery system as such is a relevant parameter in ODN delivery. Antisense ODNs bound extensively to the RNA matrix in the cell nuclei, thereby interacting with target mRNA and causing its subsequent degradation. Antisense delivery effectively diminished the mRNA pool, thus resulting in downregulation of newly synthesized 5HT1A proteins, without the appearance of truncated protein fragments. In conjunction with the selected mRNA target sequences of the ODNs, the latter data indicated that effective degradation rather than a steric blockage of the mRNA impedes protein expression. The specificity of the antisense approach, as described in this study, is reflected by the effective functional downregulation of the 5-HT1A receptor.  相似文献   

2.
In primary cultures of human neurons, 17beta-estradiol (17beta-E2) prevents caspase-6-mediated cell death and induces a caspase inhibitory factor (CIF) inhibiting active caspase-6 (Csp-6) in vitro. Here, we show that treatment of neurons with 17beta-E2 results in a proteasomal-dependent but ubiquitin-independent degradation of endogenous and exogenous active Csp-6 in live neurons and in cell free assays, respectively. We further show that the proteasomal-dependent degradation of Csp-6 is not required for its inhibition. Using several protease inhibitors, we find that leupeptin, E-64, and ALLN prevent inhibition of recombinant active Csp-6 (R-Csp-6) in 17beta-E2-treated neuronal protein extracts. Because all three protease inhibitors have the ability to inhibit cysteine proteases, we believe that a cysteinyl protease activity may be required for 17beta-E2-mediated inhibition of active Csp-6. However, we exclude caspases, calpains, and cathepsins as potential cysteinyl proteases involved in the 17beta-E2-mediated Csp-6 inhibition. The results suggest that a proteolytic activity inhibited by leupeptin, E-64, and ALLN is needed to inhibit Csp-6 and that the inhibited Csp-6 is subsequently degraded by the proteasome. The mechanism of 17beta-E2-mediated inhibition of Csp-6 is different from the ubiquitin-dependent proteasomal degradation of Csp-3 and Csp-7 by XIAP and cIAP2 but consistent with the mechanism of Baculovirus p35 inhibition of caspases.  相似文献   

3.
c—erbB2对大鼠黄体细胞hCG诱导的孕酮分泌的影响   总被引:6,自引:1,他引:5  
采用离体细胞体外孵育法,研究反义c-erbB2寡脱氧核苷酸(antisense c-erbB2 ODN)对大鼠黄体细胞hCG诱导的孕酮分泌的影响,及其与外源性cAMP和Ca^2+以及蛋白抑制剂放线菌酮(CYX)之间的关系。结果表明,反义c-erbB2以剂量相关方式抑制黄体细胞hCG诱导的孕酮的产生,同时使c-erbB2蛋白染色阳性的黄体细胞百分数下降,无义tat ODN没有相应的作用。10^-4  相似文献   

4.
c-erbB_2对大鼠黄体细胞hCG诱导的孕酮分泌的影响   总被引:2,自引:0,他引:2  
采用离体细胞体外孵育法 ,研究反义c erbB2 寡脱氧核苷酸 (antisensec erbB2 ODN)对大鼠黄体细胞hCG诱导的孕酮分泌的影响 ,及其与外源性cAMP和Ca2 以及蛋白抑制剂放线菌酮 (CYX)之间的关系。结果表明 ,反义c erbB2 以剂量相关方式抑制黄体细胞hCG诱导的孕酮的产生 ,同时使c erbB2 蛋白染色阳性的黄体细胞百分数下降 ,无义tatODN没有相应的作用。10 -4 mol/L的二丁酰cAMP能明显反转反义c erbB2 ODN对孕酮产生和c erbB2 表达的抑制作用 ,钙离子通道阻断剂维拉帕米和蛋白抑制剂CYX对此抑制作用有协同效应。该实验说明c erbB2 参于hCG诱导黄体细胞生孕酮作用  相似文献   

5.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 play a key role in allergic inflammation. They mediate their effect via receptors that consist of two distinct subunits, a cytokine-specific alpha subunit and a common beta subunit (betac) that transduces cell signaling. We sought to down-regulate the biologic activities of GM-CSF, IL-3, and IL-5 simultaneously by inhibiting betac mRNA expression with antisense technology. Experiments were performed with TF-1 cells (a human erythroleukemia cell line expressing GM-CSF, IL-3, and IL-5 receptors, which proliferates in response to these cytokines), monocytic U937 cells, which require these cytokines for differentiation, and purified human eosinophils. Cells were treated with antisense phosphorothioate oligodeoxynucleotides (ODN) targeting betac mRNA. In contrast to nontreated cells and cells treated by sense or mismatched ODN, antisense ODN inhibited betac mRNA expression and significantly decreased the level of cell surface betac protein expression on TF-1 and U937 cells. Receptor function was also affected. Antisense ODN were able to inhibit TF-1 cell proliferation in vitro in the presence of GM-CSF, IL-3, or IL-5 in the culture medium and eosinophil survival. We suggest that antisense ODN against betac may provide a new therapeutic alternative for the treatment of neoplastic or allergic diseases associated with eosinophilic inflammation.  相似文献   

6.
The genomes of most vertebrates contain numerous retroviral sequences, the great majority of which are non-infectious. These endogenous retroviral sequences are transcribed and translated in many host tissues, and are induced by mitogens. The function, if any, of endogenous retroviruses has been unclear. The transmembrane envelope proteins of some infectious type C retroviruses suppress lymphocyte activation, but it is unknown whether any endogenous type C retroviruses share this suppressive activity. To study the possible effects of murine endogenous retroviral expression, specific antisense oligonucleotides were synthesized complementary to type C retroviral sequences, and were cultured with murine spleen cells. If any of these endogenous retroviruses are suppressing lymphocyte activation, then inhibiting such endogenous retroviral-mediated suppression with antisense might result in lymphocyte stimulation. Three classes of endogenous type C retroviral sequences may be distinguished by antisense oligonucleotides (based on their homology to infectious retroviruses): ecotropic, xenotropic, and mink cell focus-forming (MCF). Antisense oligonucleotides to endogenous MCF envelope gene (env) initiation regions caused: i) doubling or tripling of spleen cell RNA synthesis, and ii) marked increases in lymphocyte surface Ia and Ig expression relative to control oligonucleotides. Antisense oligos to xenotropic or ecotropic env sequences or to endogenous MCF non-envelope sequences had no effect. These data suggest that endogenous MCF sequences exert an inhibitory influence on the murine immune system. Because endogenous MCF expression is inducible by immune stimuli, such expression could constitute an inhibitory feedback circuit that participates in the regulation of immune homeostasis.  相似文献   

7.
The study of MS-KIF18A kinesin protein is focused on its cellular distribution and association with a cargo protein. Indirect immunofluorescence (IF) analyzed the intracellular distribution of endogenous MS-KIF18A and the transfected enhanced green fluorescence protein (eGFP)-MS-KIF18A in osteogenic cells. In both cases, the proteins were localized at the plasma membrane, cytosol, and nucleus. Bioinformatics analysis suggested interactions between MS-KIF18A and estrogen receptor (ERalpha) which were further elucidated by immunoprecipitation (IP). We identified interaction between endogenous MS-KIF18A with 66 and 46 kDa isoforms of ERalpha in MBA-15 cells. Moreover, MS-KIF18A and 66 kDa ERalpha complex has been demonstrated between ectopically expressed proteins in COS-7 cells. We have shown that anti-MS-KIF18A antibody immunoprecipitated the ERalpha and pERK in cells challenged with 17beta-estrogen (17beta-E2). The hormone activation induced mitogen-activated protein kinases (MAPK) pathway and increased p-ERK. The activation was interfered when cells were pre-treated with either ICI-182,780 or MAPK inhibitor PD98059 prior the challenge with 17beta-E2 that resulted in a decrease in association between MS-KIF18A and p-ERK1/2. The obtained results suggest a role for the proteins in a non-genomic response of MBA-15 cells challenged with 17beta-E2. This study presents a novel interaction between MS-KIF18A and ER that may have important physiological and pharmacological implications for estrogen action in various cells.  相似文献   

8.
Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells (HUVECs) and simian virus 40-transformed rat lung vascular endothelial cells (TRLECs), 17beta-estradiol (E2), but not 17alpha-E2, caused acute activation of eNOS that was unaffected by actinomycin D and was specifically blocked by the pure estrogen receptor antagonist ICI-182,780. Treatment of both TRLECs and HUVECs with 17beta-E2 stimulated the activation of Akt, and the PI3K inhibitor wortmannin blocked the 17beta-E2-induced activation of Akt. 17beta-E2-induced Akt activation was also inhibited by ICI-182,780, but not by actinomycin D. Either treatment with wortmannin or exogenous expression of a dominant negative Akt in TRLECs decreased the 17beta-E2-induced eNOS activation. Moreover, 17beta-E2-induced Akt activation actually enhances the phosphorylation of eNOS. 17beta-E2-induced Akt activation was dependent on both extracellular and intracellular Ca(2+). We further examined the 17beta-E2-induced Akt activity in Chinese hamster ovary (CHO) cells transiently transfected with cDNAs for estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). 17beta-E2 stimulated the activation of Akt in CHO cells expressing ERalpha but not in CHO cells expressing ERbeta. Our findings suggest that 17beta-E2 induced eNOS activation through an Akt-dependent mechanism, which is mediated by ERalpha via a nongenomic mechanism.  相似文献   

9.
Antisense oligodeoxynucleotides (ODNs) have been applied to regulate gene expression using cell-free media or animal cells. Here we demonstrate the specific inhibition of barley alpha-amylase gene expression by synthetic antisense ODNs. In a cell free system using wheat-germ extracts, 5 microM of a 20-mer antisense ODN prevented the synthesis of the polypeptide corresponding to the predetermined length of alpha-amylase translated in vitro, whereas there was no effect on other protein synthesis. Furthermore, in cultured aleurone cells, alpha-amylase activity was efficiently decreased by addition of ODNs. At the concentrations higher than 5 microM, antisense ODN inhibited alpha-amylase gene expression almost completely. These results imply that ODN could transport into the cultured aleurone cells crossing the cell membrane, and regulate specific gene expression. This simple model system could be applicable not only for the analysis of the alpha-amylase multigene family in barley but also for studying functions of cryptic genes in higher plant.  相似文献   

10.
11.
The role exerted by protein kinase C (PKC) on estrogen-induced DNA synthesis has been investigated in hepatic and mammary gland cells, HepG2 and MCF7. 17-beta-estradiol stimulated DNA synthesis in HepG2 and MCF7 cells, maximal effect occurring at 10 nM. DNA synthesis stimulation was prevented by anti-estrogen ICI 182,780 and by inhibitor of PKC, Ro 31-8220. The rapid estradiol effects in MCF7 cells were determined by following the inositol trisphosphate (IP(3)) production and PKC-alpha membrane translocation. After estradiol treatment the increase of IP(3) production, prevented by anti-estrogen or by phospholipase C (PLC) inhibitor (neomycin), was present in MCF7 cells. In MDA cells, devoid of estrogen receptor, no effect was observed. The PKC-alpha presence on the membranes appeared unchanged in MCF7 cells. The PLC inhibitors, neomycin and U73,122, and PKC-alpha down regulator, phorbol 12-myristate 13-acetate (PMA), were able to prevent estradiol-induced DNA synthesis in hepatoma cells, but ineffective in mammary cells; wortmannin, an inhibitor of phosphoinositide 3-kinases (PI3-K), blocked DNA synthesis in both cell lines. These data show that beta-estradiol, via an estrogen receptor-mediated mechanism, activates more signal transduction pathways, and consequently different PKC isoforms in two responsive cell lines. In both cell lines PI3-K/PKC pathway is functional to the estrogen regulation of DNA synthesis, whereas in HepG2 cells the parallel involvement of the PLC/PKC-alpha pathway is present. The reported results indicate that the DNA synthesis stimulation by beta-estradiol requires the estrogen receptor and utilises one or more activated pathways in dependence on the cell equipment.  相似文献   

12.
采用离体孵育大鼠黄体细胞的方法,观察了反义c-fos寡脱氧核苷酸(反义c-fos ODN)对hCG诱导的黄体细胞孕酮(P)和雌二醇(E  相似文献   

13.
《Life sciences》1997,60(9):PL155-PL159
An antisense oligodeoxynucleotide (ODN) targeting 20 bases of the coding sequence of the cloned delta opioid receptor (DOR-1), a mismatched ODN (different from the antisense ODN at 4 bases) or saline was administered to 3 groups of CD-1 mice implanted with naltrexone pellets (7.5 mg) for 7 days. Morphine supersensitivity (i.e., increased potency as defined by decreased morphine ED50 values) was observed 24 h after pellet removal (day 8) in mice treated with saline or mismatch ODN, but not in antisense ODN treated mice. Antisense ODN alone had no effect on basal nociceptive thresholds or morphine analgesia but reduced the analgesic potency of the delta2 opioid agonist [D-Ala2]deltorphin II. These data suggest that the delta2 opioid receptor system participates in the adaptive changes contributing to increased morphine potency following chronic naltrexone treatment.  相似文献   

14.
The synthesis, hybridization properties and antisense activities of oligodeoxynucleotides (ODNs) containing 7-(1-propynyl)-7-deaza-2'-deoxyguanosine (pdG) and 7-(1-propynyl)-7-deaza-2'-deoxyadenosine (pdA) are described. The suitably protected nucleosides were synthesized and incorporated into ODNs. Thermal denaturation (Tm) of these ODNs hybridized to RNA demonstrates an increased stability relative to 7-unsubstituted deazapurine and unmodified ODN controls. Antisense inhibition by these ODNs was determined in a controlled microinjection assay and the results demonstrate that an ODN containing pdG is approximately 6 times more active than the unmodified ODN. 7-Propyne-7-deaza-2'-deoxyguanosine is a promising lead analog for the development of antisense ODNs with increased potency.  相似文献   

15.
16.
17.
Estrogens play an important role in normal physiology and in a variety of pathological states involving diverse tissues including breast and bone. The mechanism by which estrogens exert cell type- and disease-specific effects, however, remains to be explained. We have compared the gene expression profile of the MCF7 breast cancer cell line with that of the osteoblast-like cell line U2OS-ERalpha by expression microarrays. We find that fewer than 10% of the 17beta-estradiol (E2)-regulated genes are common to both cell types. We have validated this in primary calvarial osteoblasts. To dissect the mechanism underlying the cell type-specific E2 regulation of gene expression in MCF7 and U2OS-ERalpha cells, we compared the ERalpha binding sites on DNA in the two cell types by performing chromatin immunoprecipitation (ChIP) on genomic tiling arrays (ChIP-on-chip). Consistent with the distinct patterns of E2-regulated gene expression in these two cell lines, we find that the vast majority of ERalpha binding sites are also cell type specific and correlate both in position and number with cell type-specific gene regulation. Interestingly, although the forkhead factor FoxA1 plays a critical role in defining the ERalpha cistrome in MCF7 cells, it is not expressed in U2OS-ERalpha cells, and forkhead motifs are not enriched in the ERalpha cistrome in these cells. Finally, the ERalpha cistromes are correlated with cell type-specific epigenetic histone modifications. These results support a model for the cell type-specific action of E2 being driven primarily through specific ERalpha occupancy of epigenetically marked cis-regulatory regions of target genes.  相似文献   

18.
We have tested the effects of two Eli-Lilly compounds, LY 117, 018 and raloxifene, on E2-regulated and IGF-I-induced proliferation or AP-1 activity in human breast cancer cells. We now demonstrate that both molecules have strong antiestrogenic and anti-growth factor inhibitory effects in MCF7 cells. They were as potent as ICI 182, 780 and more efficient than OH-Tam to prevent estradiol action whereas their inhibition on IGF-I stimulation was less than with ICI 182, 780 and equivalent to that of OH-Tam. Moreover, raloxifene was the most efficient molecule to prevent IGF-I-induced AP-1 activity, with a significant effect observed with a concentration as low as 5 × 10−11 M in the presence of IGF-I alone. Similar dose–response curves were obtained with a combined treatment of IGF-I and E2 with a 2 log shift. Their action on IGF-I-induced proliferation was completely abrogated in MCF7 transfectants in which the expression of an antiestrogen-regulated protein tyrosine phosphatase, PTPL1, was abolished by antisense RNA transfection. Accordingly, they were both able to dose-dependently regulate the expression of PTPL1 and to interfere with the PI3-K/Akt pathway by drastically decreasing Akt phosphorylation exclusively in wild-type PTPL1 expressing cells.

Our data altogether demonstrate that raloxifene has a potent inhibitory effect on IGF-I action, with a drastic effect on AP-1 triggered responses as well as on Akt phosphorylation, suggesting that it might be a useful therapeutic agent in tumors in which these signalling pathways become constitutively active.  相似文献   


19.
To elucidate the role of endogenous transforming growth factor (TGF)-beta2 on human osteoblast cell, antisense phosphorothioate oligonucleotides (S-ODNs) complementary to regions in mRNA of TGF-beta2 were synthesized and examined their effects on TGF-beta2 production and cell proliferation in a human osteoblast cell line ROS 17/2. Antisense S-ODNs were designated for three different target regions in the mRNA of TGF-beta2. Among several antisense S-ODN analyzed, an oligonucleotide (AS-11) complementary to the translation initiation site of mRNA of TGF-beta2 demonstrated a selective and strong inhibitory effect on TGF-beta2 production in osteoblast cells. Other antisense S-ODNs which were designated for other regions in mRNA of TGF-beta2 and one- or three-base mismatched analogs of AS-11 showed little or much less antisense activities than AS-11. Therefore, the most effective target site in mRNA of TGF-beta2 is at the initiation codon region. The antisense effects of AS-11 were observed without reduction of levels of mRNA of TGF-beta2. Furthermore, the inhibition of TGF-beta2 expression by antisense S-ODN appeared to enhance cell proliferation, demonstrating the growth inhibitory effect of autocrine TGF-beta2 in osteoblast cells.  相似文献   

20.
The subcellular localisation of oligodeoxynucleotides (ODN) is a major limitation for their use against nuclear targets. In this study we demonstrate that an antisense ODN directed against cytosolic phospholipase A(2) (cPLA2) mRNA is efficiently taken up and accumulates in the nuclei of endothelial cells (HUVEC), human monocytes and HeLa cells. Gel shift experiments and incubation of cells with oligonucleotide derivatives show that the anti-cPLA2 oligo binds a 37 kDa protein in nuclear extracts. The TAAAT sequence was identified as the major binding motif for the nuclear protein in competition experiments with mutated ODNs. Modification of the AAA triplet resulted in an ODN which failed to localise in the nucleus. Moreover, inserting a TAAAT motif into an ODN localising in the cytosol did not modify its localisation. The 37 kDa protein was purified and identified after peptide sequencing as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It was shown by confocal microscopy that GAPDH co-localises with anti-cPLA2 ODN in the nucleus and commercial GAPDH effectively binds the oligo. Competition experiments with increasing concentration of NAD(+) co-factor indicate that the GAPDH Rossmann fold is a docking site for antisense oligonucleotides containing a TAAAT motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号