首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The sodium cation (Na+) is the predominant cation with deleterious effects on crops in salt-affected agricultural areas. Salt tolerance of crop can be improved by increasing shoot Na+ exclusion. Therefore, it is crucial to identify and use genetic variants of various crops that promote shoot Na+ exclusion. Here, we show that a HKT1 family gene ZmNC3 (Zea mays L. Na+ Content 3; designated ZmHKT1;2) confers natural variability in shoot-Na+ accumulation and salt tolerance in maize. ZmHKT1;2 encodes a Na+-preferential transporter localized in the plasma membrane, which mediates shoot Na+ exclusion, likely by withdrawing Na+ from the root xylem flow. A naturally occurring nonsynonymous SNP (SNP947-G) increases the Na+ transport activity of ZmHKT1;2, promoting shoot Na+ exclusion and salt tolerance in maize. SNP947-G first occurred in the wild grass teosinte (at a allele frequency of 43%) and has become a minor allele in the maize population (allele frequency 6.1%), suggesting that SNP947-G is derived from teosinte and that the genomic region flanking SNP947 likely has undergone selection during domestication or post-domestication dispersal of maize. Moreover, we demonstrate that introgression of the SNP947-G ZmHKT1;2 allele into elite maize germplasms reduces shoot Na+ content by up to 80% and promotes salt tolerance. Taken together, ZmNC3/ZmHKT1;2 was identified as an important QTL promoting shoot Na+ exclusion, and its favourable allele provides an effective tool for developing salt-tolerant maize varieties.  相似文献   

4.
5.
Salt Tolerance of Cotton: Some New Advances   总被引:5,自引:0,他引:5  
Referee: Dr. Lin Wu, Department of Environmental Horticulture, University of California, Davis, Davis, CA 95616 Cotton is a dual-purpose crop, widely used for fiber and oil purposes throughout the world. It is placed in the moderately salt-tolerant group of plant species with a salinity threshold level 7.7?dS m?1, its growth and seed yield being severely reduced at high salinity levels and different salts affect the cotton growth to a variable extent. However, inter- and intraspecific variation for cotton salt tolerance in cotton is considerable and thus can be exploited through specific selection and breeding for enhancing salt tolerance of the crop. There are contrasting reports regarding the crop response to salinity at different plant growth stages, but in most of them it is evident that the crop maintains its degree of salt tolerance consistently throughout its entire developmental phases. In the latter case an effective selection for salt tolerance is possible to be made at any growth stage of the crop. The pattern of uptake and accumulation of toxic ions (Na+ and/or Cl?) in tissues of plants subjected to saline conditions appears to be due mostly to the mechanism of partial ion exclusion (exclusion of Na+ and/or Cl?) in cotton. Maintenance of high tissue K/Na and Ca/Na ratios is suggested to be an important selection criterion for salt tolerance in cotton. While judging the appropriate mechanism of ion transport across the membranes in view of existing literature, it was evident that the PM-ATPase responds to increasing supply of Na+ in the growth medium, but the activity of the transport proteins on the plasma membrane alone were insufficient to regulate intracellular Na+ levels. Vacuolar-ATPase is also not responsive to increased external Na+. The inability of V-ATPase to respond to Na+ gave indication of the lack of effective driving force for compartmentalization of Na+ in cotton. However, in view of some latest studies concenrning the role of some antioxidants in salt tolerance of cotton it was suggested that high levels of antioxidants and an active ascorbate-glutathione cycle are associated with salt tolerance in cotton. Genetic studies with cotton in relation to salinity tolerance exhibited that most of growth, yield, and fiber characteristics are genetically based and most being QTL controlled and variable. The high additive component of variation can be exploited for breeding to produce further improvement in the salt tolerance of cotton.  相似文献   

6.
Soil salinity adversely affects plant growth, crop yield and the composition of ecosystems. Salinity stress impacts plants by combined effects of Na+ toxicity and osmotic perturbation. Plants have evolved elaborate mechanisms to counteract the detrimental consequences of salinity. Here we reflect on recent advances in our understanding of plant salt tolerance mechanisms. We discuss the embedding of the salt tolerance‐mediating SOS pathway in plant hormonal and developmental adaptation. Moreover, we review newly accumulating evidence indicating a crucial role of a transpiration‐dependent salinity tolerance pathway, that is centred around the function of the NADPH oxidase RBOHF and its role in endodermal and Casparian strip differentiation. Together, these data suggest a unifying and coordinating role for Ca2+ signalling in combating salinity stress at the cellular and organismal level.  相似文献   

7.
Salinity tolerance can be attributed to three different mechanisms: Na+ exclusion from the shoot, Na+ tissue tolerance and osmotic tolerance. Although several key ion channels and transporters involved in these processes are known, the variation in expression profiles and the effects of these proteins on Na+ transport in different accessions of the same species are unknown. Here, expression profiles of the genes AtHKT1;1, AtSOS1, AtNHX1 and AtAVP1 are determined in four ecotypes of Arabidopsis thaliana. Not only are these genes differentially regulated between ecotypes, the expression levels of the genes can be linked to the concentration of Na+ in the plant. An inverse relationship was found between AtSOS1 expression in the root and total plant Na+ accumulation, supporting a role for AtSOS1 in Na+ efflux from the plant. Similarly, ecotypes with high expression levels of AtHKT1;1 in the root had lower shoot Na+ concentrations, due to the hypothesized role of AtHKT1;1 in retrieval of Na+ from the transpiration stream. The inverse relationship between shoot Na+ concentration and salinity tolerance typical of most cereal crop plants was not demonstrated, but a positive relationship was found between salt tolerance and levels of AtAVP1 expression, which may be related to tissue tolerance.  相似文献   

8.
Qiao WH  Zhao XY  Li W  Luo Y  Zhang XS 《Plant cell reports》2007,26(9):1663-1672
Agropyron elongatum, a species in grass family, has a strong tolerance to salt stress. To study the molecular mechanism of Agropyron elongatum in salt tolerance, we isolated a homolog of Na+/H+ antiporters from the root tissues of Agropyron plants. Sequence analysis revealed that this gene encodes a putative vacuolar Na+/H+ antiporter and was designated as AeNHX1. The AeNHX1–GFP fusion protein was clearly targeted to the vacuolar membrane in a transient transfection assay. Northern analysis indicated that AeNHX1 was expressed in a root-specific manner. Expression of AeNHX1 in yeast Na+/H+ antiporter mutants showed function complementation. Further, overexpression of AeNHX1 promoted salt tolerance of Arabidopsis plants, and improved osmotic adjustment and photosynthesis which might be responsible for normal development of transgenic plants under salt stress. Similarly, AeNHX1 also functioned in transgenic Festuca plants. The results suggest that this gene might function in the roots of Agropyron plants, and its expression is involved in the improvement of salt tolerance.  相似文献   

9.
10.
Salt stress is one of the most serious factors limiting the productivity of agricultural crops. Increasing evidence has demonstrated that vacuolar Na+/H+ antiporters play a crucial role in plant salt tolerance. In the present study, we expressed the Suaeda salsa vacuolar Na+/H+ antiporter SsNHX1 in transgenic rice to investigate whether this can increase the salt tolerance of rice, and to study how overexpression of this gene affected other salt-tolerant mechanisms. It was found that transgenic rice plants showed markedly enhanced tolerance to salt stress and to water deprivation compared with non-transgenic controls upon salt stress imposition under outdoor conditions. Measurements of ion levels indicated that K+, Ca2+ and Mg2+ contents were all higher in transgenic plants than in non-transformed controls. Furthermore, shoot V-ATPase hydrolytic activity was dramatically increased in transgenics compared to that of non-transformed controls under salt stress conditions. Physiological analysis also showed that the photosynthetic activity of the transformed plants was higher whereas the same plants had reduced reactive oxygen species generation. In addition, the soluble sugar content increased in the transgenics compared with that in non-transgenics. These results imply that up-regulation of a vacuolar Na+/H+ antiporter gene in transgenic rice might cause pleiotropic up-regulation of other salt-resistance-related mechanisms to improve salt tolerance.Fengyun Zhao and Zenglan Wang contributed equally to this work.  相似文献   

11.
A cDNA (SsCAX1) encoding a tonoplast-localised Ca2+/H+ exchanger was isolated from a C3 halophyte Suaeda salsa (L.). To clarify the role of SsCAX1 in plant salt tolerance, Arabidopsis plants expressing SsCAX1 were treated with NaCl. Transgenic Arabidopsis plants displayed decreased salt tolerance. Although Na+ content was close to wild-type plants, transgenic plants accumulated more Ca2+ and retained less K+ in leaves than the wild-type plants in salinity. Furthermore, transgenic lines held higher leaf membrane leakage than wild-type lines under NaCl treatment. In addition, transgenic plants showed a 23% increase in vacuolar H+-ATPase activity compared with wild-type plants in normal condition. But the leaf V-H+-ATPase activity had subtle changes in transgenic plants, while significantly increased in wild-type plants under saline condition. These results suggested that regulated expression of Ca2+/H+ antiport was critical for maintenance of cation homeostasis and activity of V-H+-ATPase under saline condition.  相似文献   

12.
Soil salinity represents a major constraint on plant growth. Here, we report that the over-expression of the Chrysanthemum crassum plasma membrane Na+/H+ antiporter gene CcSOS1, driven by the CaMV 35S promoter, improved the salinity tolerance of chrysanthemum ‘Jinba’. In salinity-stressed transgenic plants, both the proportion of the leaf area suffering damage and the electrical conductivity of the leaf were lower in the transgenic lines than in salinity-stressed wild type plants. After a 6 day exposure to 200 mM NaCl, the leaf content of both chlorophyll (a+b) and proline was higher in the transgenic than in the wild type plants. The activity of both superoxide dismutase and peroxidase was higher in the transgenic than in the wild type plants throughout the period of NaCl stress. The transgenic plants had a stronger control over the ingress of Na+ into the plant, particularly with respect to the youngest leaves, and so maintained a more favorable K+/Na+ ratio. The result suggests that a possible strategy for improving the salinity tolerance of chrysanthemum could target the restriction of Na+ accumulation. This study is the first to report the transgenic expression of a Na+ efflux carrier in chrysanthemum.  相似文献   

13.
The AaNhaD gene from soda lake Alkalimonas amylolytica encodes a Na+/H+ antiporter that plays a crucial role in the bacterium's resistance to salt/alkali stresses. Zhong et al. (pp. 412–421) reported that AaNhaD functions as a pH‐dependent tonoplast Na+/H+ antiporter in plant cells and is able to enhance the salinity/alkalinity tolerance in transgenic tobacco BY‐2 cells and plants. The cover picture illustrates that AaNhaD proteins are located primarily in the vacuole membranes in a BY‐2 cell.  相似文献   

14.
Recently, we found NHX1, the gene encoding a Na+/H+ exchanger, participated in plant disease defense. Although NHX1 has been confirmed to be involved in plant salt tolerance, whether the NHX1 transgenic plants exhibit both salt tolerance and disease resistance has not been investigated. The T1 progenies of Nicotiana tabacum L. lines expressing SeNHX1 (from Salicornia europaea) were generated for the present study. Compared with PBI-type control plants, SeNHX1 transgenic tobaccos exhibited more biomass, longer root length, and higher K+/Na+ ratio at post germination or seedling stage under NaCl treatment, indicating enhanced salt tolerance. The vacuolar H+ efflux in SeNHX1 transgenic tobacco was increased after treatment of NaCl with different concentration. Meanwhile, the SeNHX1 transgenic tobaccos showed smaller wilted spot area, less H2O2 accumulation in leaves after infection of Phytophthora parasitica var. nicotianae. Further investigation demonstrated a larger NAD(P)(H) pool in SeNHX1 transgenic tobacco. These evidences revealed that overexpression of SeNHX1 intensified the compartmentation of Na+ into vacuole under salt stress and improved the ability of eliminating ROS after pathogen attack, which then enhanced salt tolerance and disease resistance simultaneously in tobacco. Our findings indicate NHX1 has potential value in creating crops with both improved salt tolerance and disease resistance.  相似文献   

15.
Zhou S  Zhang Z  Tang Q  Lan H  Li Y  Luo P 《Biotechnology letters》2011,33(2):375-380
AtNHX1, a vacuolar Na+/H+ antiporter gene from Arabidopsis thaliana, was introduced into tobacco genome via Agrobacterium tumefaciens-mediated transformation to evaluate the role of vacuolar energy providers in plants salt stress response. Compared to the wild-type plants, over-expression of AtNHX1 increased salt tolerance in the transgenic tobacco plants, allowing higher germination rates of seeds and successful seedling establishment in the presence of toxic concentrations of NaCl. More importantly, the induced Na+/H+ exchange activity in the transgenic plants was closely correlated to the enhanced activity of vacuolar H+-ATPase (V-ATPase) when exposed to 200 mM NaCl. In addition, inhibition of V-ATPase activity led to the malfunction of Na+/H+ exchange activity, placing V-ATPase as the dominant energy provider for the vacuolar Na+/H+ antiporter AtNHX1. V-ATPase and vacuolar Na+/H+ antiporter thus function in an additive or synergistic way. Simultaneous overexpression of V-ATPase and vacuolar Na+/H+ antiporter might be appropriate for producing plants with a higher salt tolerance ability.  相似文献   

16.
NHX‐type antiporters in the tonoplast have been reported to increase the salt tolerance of various plants species, and are thought to mediate the compartmentation of Na+ in vacuoles. However, all isoforms characterized so far catalyze both Na+/H+ and K+/H+ exchange. Here, we show that AtNHX1 has a critical involvement in the subcellular partitioning of K+, which in turn affects plant K+ nutrition and Na+ tolerance. Transgenic tomato plants overexpressing AtNHX1 had larger K+ vacuolar pools in all growth conditions tested, but no consistent enhancement of Na+ accumulation was observed under salt stress. Plants overexpressing AtNHX1 have a greater capacity to retain intracellular K+ and to withstand salt‐shock. Under K+‐limiting conditions, greater K+ compartmentation in the vacuole occurred at the expense of the cytosolic K+ pool, which was lower in transgenic plants. This caused the early activation of the high‐affinity K+ uptake system, enhanced K+ uptake by roots, and increased the K+ content in plant tissues and the xylem sap of transformed plants. Our results strongly suggest that NHX proteins are likely candidates for the H+‐linked K+ transport that is thought to facilitate active K+ uptake at the tonoplast, and the partitioning of K+ between vacuole and cytosol.  相似文献   

17.
In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild‐type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na+ accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na+/H+ exchange activity and Na+ efflux in transgenic plants were significantly higher than those in the wild‐type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt‐tolerant trees.  相似文献   

18.
Genes for V-H+-ATPase subunits were identified and cloned from the salt-tolerant wheat mutant RH8706-49. Sequences of these genes are highly conserved in plants. Overexpression of these genes in Arabidopsis thaliana improved its salt tolerance, and increased the activities of V-H+-ATPase and Na+/H+ exchange, with the largest increase in plants carrying the c subunit of V-H+-ATPase. Results from quantitative RT-PCR analysis indicated that the mRNA level of each V-H+-ATPase subunit in the Arabidopsis increased under salt stress. Overall, our results suggest that each V-H+-ATPase subunit plays a key role in enhancing salt tolerance in plants.  相似文献   

19.
Soil salinity is a major factor limiting apple production in some areas. Tonoplast Na+/H+ antiporters play a critical role in salt tolerance. Here, we isolated MdNHX1, a vacuolar Na+/H+ antiporter from Luo-2, a salt-tolerant rootstock of apple (Malus × domestica Borkh.), and introduced it into apple rootstock M.26 by Agrobacterium-mediated transformation. PCR and DNA gel blot analyses confirmed successful integration of MdNHX1. RT-PCR analysis indicated that the gene was highly expressed in transgenic plants, but the degree of this expression varied among lines. Its overexpression conferred high tolerance to salt stress. Analysis of ion contents showed that, when exposed to salinity stress, the transgenics compartmentalized more Na+ in the roots and also maintained a relatively high K+/Na+ ratio in the leaves compared with non-transformed plants. Under normal conditions, however, amounts of potassium and sodium did not differ significantly between transgenic and control plants.  相似文献   

20.
Crop productivity is greatly affected by soil salinity, so improvement in salinity tolerance of crops is a major objective of many studies. We overexpressed the Arabidopsis thaliana SOS1 gene, which encodes a plasma membrane Na+/H+ antiporter, in tobacco (Nicotiana tabacum cv. Xanthi-nc). Compared with nontransgenic plants, seeds from transgenic tobacco had better germination under 120 mM (mmol L−1) NaCl stress; chlorophyll loss in the transgenic seedlings treated with 360 mM NaCl was less; transgenic tobacco showed superior growth after irrigation with NaCl solutions; and transgenic seedlings with 150 mM NaCl stress accumulated less Na+ and more K+. In addition, roots of SOS1-overexpressing seedlings lost less K+ instantaneously in response to 50 mM NaCl than control plants. These results showed that the A. thaliana SOS1 gene potentially can improve the salt tolerance of other plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号