首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. In addition to the pheromone components (Z)-5-decenyl, (Z)-7-dodecenyl and (Z)-9-tetradecenyl acetate (Z5-10:OAc, Z7-12:OAc and Z9-14:OAc), it has previously been shown that the sex pheromone gland of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae Schiff) contains 10:OAc, 12:OAc, Z5-12:OAc, Z9-12:OAc, 11–12:OAc, Z5-14:OAc, Z7-14:OAc and Z11-16:OAc. To find out whether any of these additional compounds is involved in the sex pheromone communication in A. segetum, a comprehensive electro-physiological and behavioural investigation was conducted. Single-sensillum recordings on male antennae revealed three subtypes of sensilla among the previously so-called Z5-10:OAc sensilla. One subtype was identified having one receptor neurone (A) that responded to Z5-10:OAc with a large spike amplitude and another neurone (B) that responded to (Z)-5-decenol (Z5-10:OH) with a small spike amplitude. In another subtype the B neurone responded to Z5-12:OAc and sometimes also to 27-12:OAc and 10:OAc, in addition to responding to Z5-10:OH. In a third subtype the A neurone responded to all acetates identified from the female pheromone gland, whereas the small spike amplitude neurone was tuned to Z5-10:OH. A flight tunnel assay showed that blends composed of nine, eight or seven compounds were equivalent to the previously identified three-component pheromone blend in eliciting male behavioural responses. In field trapping tests, blends of eleven, nine or seven compounds did, however, catch significantly more moths than the three-component blend. Further assays showed that only 25- 12:OAc could significantly increase the catch numbers when added to the three-component blend, and thus qualified as a fourth pheromone component in A. segerum. The behavioural significance of additional female-produced acetates — for which males possess antennal receptors — is suggested, but may be impossible to confirm because of ‘diminishing returns’ when trying to refine a multicomponent pheromone further.  相似文献   

2.
GC-EAD analyses of pheromone gland extracts of calling female Sparganothis sulfureana revealed at least 6 compounds that consistently elicited antennal responses from male antennae. In addition to the major pheromone compound, (E)-11-tetradecenyl acetate (E11–14:OAc), which was previously reported, the other compounds were found to be (E)-9-dodecenyl acetate (E9–12:OAc), (Z)-9-dodecenyl acetate (Z9–12:OAc), (Z)-9-tetradecenyl acetate (Z9–14:OAc), (Z)-11-tetradecenyl acetate (Z11–14:OAc), and (E)-11-tetradecenol (E11–14:OH). Tetradecyl acetate, hexadecyl acetate and hexadecenyl acetates were also present in the extracts, but elicited no EAG response from male antennae. Wind tunnel tests demonstrated that males from New Jersey responded equally well to a blend containing five pheromone components in relative to the pheromone glands of calling females. Different male-response profiles from field-trapping tests conducted in the states of Wisconsin and New Jersey were observed, respectively. Significantly higher numbers of male S. sulfureana were caught in New Jersey in traps baited with the binary blend of E11–14:OAc (30 μg) with 1% of Z11–14:OAc, but males from Wisconsin responded equally well to traps containing blends of E11–14:OAc with 0–10% of Z11–14:OAc. The addition of more than 10% of Z11–14:OAc to the primary pheromone compound reduced male captures significantly in both states. Male catches were doubled by adding E9–12:OAc and E11–14:OH to the most attractive binary blend in both states. The trapping test with caged live virgin female moths showed that males in Wisconsin preferred females from the local population than those from New Jersey. The differences in male responses observed may indicate the existence of pheromone polymorphism in this species.  相似文献   

3.
4.
Biosynthesis of the sex pheromone components, (Z)-5-tetradecenyl acetate (Z5-14:OAc) and (Z)-7-tetradecenyl acetate (Z7-14:OAc), was investigated in the New Zealand tortricid moth Planotortrix excessana (Walker) by fatty acid methyl ester (FAME) analysis of base-methanolyzed extracts of lipids in the sex pheromone gland and through application of various labelled fatty acids. Analysis of the base-methanolyzed gland extracts revealed common FAMEs, including methyl oleate and methyl palmitoleate, as well as the FAMEs of the putative precursors, methyl (Z)-5-tetradecenoate and methyl (Z)-7-tetradecenoate. Application of labelled, saturated fatty acids, myristic, palmitic, and stearic did not result in any significant incorporation of label into either of the unsaturated pheromone components, although label was incorporated into tetradecyl acetate (14:OAc). In contrast, application of labelled oleic acid resulted in incorporation of label into Z5-14:OAc but not into Z7-14:OAc or into 14:OAc, whereas application of labelled palmitoleic acid resulted in incorporation of label into Z7-14:OAc but not into Z5-14:OAc or 14:OAc. These data support a route for biosynthesis of Z5-14:OAc and Z7-14:OAc in this species by limited β-oxidation of the common fatty acyl moieties, respectively, oleate (involving two cycles of 2-carbon chain-shortening) and palmitoleate (involving only one cycle of 2-carbon chain-shortening), and apparently involving no desaturase (other than the common Δ9) specific to sex pheromone biosynthesis. Interestingly, P. excessana females biosynthesize the same component (Z5-14:OAc) from an entirely different route from that of the related species Ctenopseustis obliquana (which biosynthesizes Z5-14:OAc by Δ5-desaturation of myristate). Additionally, the pheromone biosynthesis activating neuropeptide (PBAN) stimulates pheromone biosynthesis in this species. Arch. Insect Biochem. Physiol. 37:158–167, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
The effects of plant-derived chemicals (volatiles) on the attraction of the Spodoptera litura moth to sex pheromones were evaluated using an electroantennogram (EAG). Neuronal responses of male moths to sex pheromone mixtures (SPs) (a 9:1 mixture of synthetic (9Z,11E)-9,11-tetraddecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-9,12-tetradecadienyl acetate (Z9E12-14:OAc)) and to SPs mixtures with eight plant volatiles (benzaldehyde, (E)-β-caryophyllene, phenylacetaldehyde, 2,6-nonadienal, benzyl alcohol, racemic linalool, longifolene, and (E)-β-ocimene) were also measured. Then, wind tunnels and field trapping bioassays were conducted to determine the influence of plant volatiles on S. litura moth behavioral responses to SPs. The results indicated that benzaldehyde, phenylacetaldehyde, and benzyl alcohol significantly enhanced, and longifolene, (E)-β-caryophyllene, and (E)-β-ocimene had no significant effect on the attractions to SPs, whereas racemic linalool significantly decreased the attraction of male S. litura moths to SPs throughout the olfactory pathway. 2,6-Nonadienal significantly enhanced olfactory responses, but had no significant effect on output behavior. These findings provide foundations in utilization of plant volatiles and sex pheromones to manage the pest and other agricultural pests.  相似文献   

6.
7.
Moths possess an extremely sensitive and diverse sex pheromone processing system, in which pheromone receptors (PRs) are essential to ensure communication between mating partners. Functional properties of some PRs are conserved among species, which is important for reproduction. However, functional differentiation has occurred in some homologous PR genes, which may drive species divergence. Here, using genome analysis, 17 PR genes were identified from Spodoptera frugiperda, S. exigua, and S. litura, which belong to 6 homologous groups (odorant receptor [OR]6, 11, 13, 16, 56, and 62); of which 6 PR genes (OR6, OR11, OR13, OR16, OR56, and OR62) were identified in S. frugiperda and S. exigua, and 5 PR genes were identified in S. litura, excluding OR62. Using heterologous expression in Xenopus oocytes, we characterized the functions of PR orthologs including OR6, OR56, and OR62, which have not been clarified in previous studies. OR6 orthologs were specifically tuned to (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:OAc), and OR62 orthologs were robustly tuned to Z7-12:OAc in S. frugiperda and S. exigua. The optimal ligand for OR56 was Z7-12:OAc in S. frugiperda, but responses were minimal in S. exigua and S. litura. In addition, SfruOR6 was male antennae-specific, whereas SfruOR56 and SfruOR62 were male antennae-biased. Our study further clarified the functional properties of PRs in 3 Spodoptera moth species, providing a comprehensive understanding of the mechanisms of intraspecific communication and interspecific isolation in Spodoptera.  相似文献   

8.
Summary Electroantennographic and single sensillum recordings were performed on male pine sawfly, Neodiprion sertifer, antennae. Responses to the sex pheromone component (2S, 3S, 7S)- 3,7-dimethyl-2-pentadecenyl (diprionyl) acetate (SSS:OAc), to the behavioral inhibitor (2S, 3R, 7R)-diprionyl acetate (SRR:OAc), to the six other enantiomers of diprionyl acetate, and to the biosynthetic precursor diprionol were recorded. Responses to trans-perillenal, a monoterpene identified in female gland extracts and to (2S, 3S, 7S)-diprionyl propionate (SSS:OPr), a field attractant for N. sertifer and some related sawfly species were also recorded.EAG recordings demonstrated a high antennal sensitivity to SSS:OAc and to SSS:OPr. A somewhat lower response was elicited by SRR:OAc.Single sensillum recordings revealed 8–12 different cells firing in each sensillum, corresponding to the number of cells observed in earlier morphological investigations. Out of these cells all, except one, responded to SSS:OAc and to SSS:OPr. No differences in the response to the two components could be observed. The largest amplitude cell in each sensillum was specifically tuned to the behavioral antagonist, SRR:OAc. The pheromone perception system encountered in male pine sawflies thus differs clearly from that observed in moths.Abbreviation EAG electroantennogram - OAc acetate - OPr propionate  相似文献   

9.
The chemical and temporal features of the sex-pheromone emitted by Heliothis virescens females are encoded by a diverse array of output pathways from the male-specific macroglomerular complex (MGC) in the antennal lobe. Most output neurons (29 out of 32) were activated by antennal stimulation with the principal component of the sex-pheromone blend of this species, (Z)-11-hexadecenal. Six neurons were excited solely by this component, 8 neurons also responded to the second essential blend component, (Z)-9-tetradecenal, and 14 neurons displayed equivalent responses to the two. Many neurons also effectively encoded the onset and duration of the stimulus. In one additional neuron, a prolonged excitatory response (synergism) was evoked only by the blend of the two components, indicating that some MGC neurons function as blend detectors.In contrast to the situation in Helicoverpa zea, none of the MGC neurons in H. virescens responded selectively to (Z)-9-tetradecenal, suggesting that these two noctuid species employ different neural strategies to encode information about their respective pheromone blends.Three MGC-output neurons responded selectively to (Z)-11-hexadecenyl acetate, an odorant released by some sympatric species that disrupts normal upwind flight to pheromones. Thus, changes in the attractant and deterrent chemical signals, as well as the physical features of these odor plumes, are encoded in the MGC across a diverse parallel array of output pathways to the protocerebrum.Abbreviations AL antennal lobe - AN antennal nerve - 16:AL hexadecanal - MGC macroglomerular complex - 14:AL tetradecanal - Z11-16:AL (Z) 11-hexadecenal - Z11-16:AC (Z) 11-hexadecenyl acetate - Z9-14:AL (Z) 9-tetradecenal - Z9-14:FO (Z) 9-tetradecenyl formate  相似文献   

10.
Females of the leaf miner moth Phyllonorycter acerifoliella (Z.) [=Ph. sylvella (Hw.)] and Ph. heegerella (Z.) (Lepidoptera: Gracillariidae: Lithocolletinae) release their sex pheromone at the beginning of photophase. The periodicity of the `calling' behaviour of Ph. acerifoliella females was established. Three compounds from calling virgin Ph. heegerella females were collected by the Solid Phase Micro Extraction (SPME) technique and identified as (Z)-8-tetradecenyl acetate (Z8-14:OAc), tetradecyl acetate (14:OAc) and (Z)-8-tetradecenol (Z8-14:OH) in the ratio (88±3):(2±0.6):(10±5) by capillary gas chromatography and mass spectrometry. Field trapping experiments demonstrated that the first two compounds are important for the attraction of conspecific males. Z8-14:OAc was found to be attractive when tested separately, while 14:OAc acted as synergist. The attractivity of the three component blend was reduced by 10% admixture of either (E)-10-dodecenyl acetate (E10-12:OAc) or (Z)-10-tetradecenyl acetate (Z10-14:OAc).Field tests of Z10-, Z8- and E10-14:OAc, identified from Ph. acerifoliella females, demonstrated that the first two compounds were essential for the attraction of conspecific males; so both are sex pheromone components. The attractivity of the three component blend of Z10- Z8- and E10-14:OAc was reduced by 10% admixture of (E)-10-dodecenol (E10-12:OH). The following four semiochemical compounds, Z8-14:OAc, Z8-14:OH, E10-14:OAc and 14:OAc, identified from phyllonoryctid females, as well as two sex attraction antagonists for Ph. acerifoliella and Ph. heegerella males, E10-12:OAc and Z10-14:OAc, are new for the family Gracillariidae. The results of field trapping experiments revealed mechanisms ensuring the specificity of the chemocommunication systems in Ph. acerifoliella, Ph. heegerella and Ph. ulmifoliella (Hb.) moths.  相似文献   

11.
Electroantennogram (EAG) measurement of male Cydia caryana moth antennal olfactory response to monounsaturated 12 and 14 carbon alcohols and acetates indicated that the (E)-8-, (E)-10- conjugated double bond system of a dodecadien-1-ol acetate is a critical chemical structural component of the C. caryana sex pheromone. Additionally, EAG measurements implicated (E)-8-dodecen-1-ol acetate, (Z)-8-dodecen-1-ol acetate, (Z)-9-dodecen-1-ol acetate and (Z)-12-tetradecen-1-ol as potential minor pheromonal components. An EAG dosage-response study suggested that there were at least two heterologous populations of pheromone acceptors. Behavioral analysis of male moth response in a flight tunnel to compounds which evoked the stronger EAG responses suggested that (E,E)-8,10-dodecadien-1-ol acetate and (Z)-9-dodecen-1-ol acetate resemble or are C. caryana sex pheromonal components, while (Z)-8-dodecen-1-ol acetate and (E)-10-dodecen-1-ol acetate are either parapheromones or are minor pheromone components. Behavioral significance of (Z)-12-tetradecen-1-ol was difficult to interpret in the flight tunnel.
Résumé Les réponses olfactives antennaires de Cydia caryana, mesurées par électroantennogrammes (EAG), aux alcools et acétates à carbones monounsaturés en positions 12 et 14, ont montré que le système conjugué de double liaison, (E)-8-, (E)-10- du dodecadien-1-ol acétate constitue un composé chimique strutural critique de la phéromone sexuelle de C. caryana.De plus, les acétates: (E)-8-dodecen-1-ol,(Z)-8-dodecen-1-ol,(Z)-9-dodecen-1-ol, et le (Z)-12-tetradecen-1-ol, se sont révélés en AEG comme des composés secondaires de la phéromone. L'étude par AEG de la relation dose-réponse a conduit à l'hypothèse de deux catégories de populations de récepteurs de phéromones. L'analyse comportementale des résponses des papillons mâles dans le tunnel de vol aux composés qui ont provoqués les plus forts AEG, on fait estimer que les acétates (E,E)-8,10-dodécadien-1-ol et (Z)-9-dodecen-1-ol ressemblent (ou sont) les constituants de la phéromone sexuelle de C. caryana; tandis que les (Z)-8-dodecen-1-ol et (E)-10-dodecen-1-ol sont, soit des paraphéromones, soit des constituants mineurs de la phéromone.La signification biologique du (Z)-12-tétradécen-1-ol a été difficile à interprêter avec les expériences en tunnel de vol.
  相似文献   

12.
Kong XB  Liu KW  Wang HB  Zhang SF  Zhang Z 《PloS one》2012,7(3):e33381

Background

The Chinese pine caterpillar moth, Dendrolimus tabulaeformis Tsai and Liu (Lepidoptera: Lasiocampidae) is the most important defoliator of coniferous trees in northern China. Outbreaks occur over enormous areas and often lead to the death of forests during 2–3 successive years of defoliation. The sex pheromone of D. tabulaeformis was investigated to define its chemistry and behavioral activity.

Methodology/Principal Findings

Sex pheromone was collected from calling female D. tabulaeformis by headspace solid phase microextraction (SPME) and by solvent extraction of pheromone glands. Extracts were analyzed by coupled gas chromatography/mass spectrometry (GC-MS) and coupled GC-electroantennographic detection (GC-EAD), using antennae from male moths. Five components from the extracts elicited antennal responses. These compounds were identified by a combination of retention indices, electron impact mass spectral matches, and derivatization as (Z)-5-dodecenyl acetate (Z5-12:OAc), (Z)-5-dodecenyl alcohol (Z5-12:OH), (5Z,7E)-5,7-dodecadien-1-yl acetate (Z5,E7-12:OAc), (5Z,7E)-5,7-dodecadien-1-yl propionate (Z5,E7-12:OPr), and (5Z,7E)-5,7-dodecadien-1-ol (Z5,E7-12:OH). Behavioral assays showed that male D. tabulaeformis strongly discriminated against incomplete and aberrant blend ratios. The correct ratio of Z5,E7-12:OAc, Z5,E7-12:OH, and Z5,E7-12:OPr was essential for optimal upwind flight and source contact. The two monoenes, Z5-12:OAc and Z5-12:OH, alone or binary mixtures, had no effect on behavioral responses when added to the optimal three-component blend.

Conclusions/Significance

The fact that deviations from the optimal ratio of 100∶100∶4.5 of Z5,E7-12:OAc, Z5,EZ7-12:OH, and Z5,E7-12:OPr resulted in marked decreases in male responses suggests that biosynthesis of the pheromone components is precisely controlled. The optimal blend of the sex pheromone components of D. tabulaeformis worked out in this study should find immediate use in monitoring this pest in Chinese forests.  相似文献   

13.
Female sex pheromone of a clearwing moth Nokona feralis (Leech) (Lepidoptera: Sesiidae), a pest of kiwifruit, was identified to be a 7:3 mixture of (3E,13Z)-3,13-octadecadienyl acetate (E3,Z13-18:OAc) and (3E,13Z)-3,13-octadecadien-1-ol (E3,Z13-18:OH) by GC-EAD and GC/MS analyses. Males were attracted to wide-range mixtures of E3,Z13-18:OAc and E3,Z13-18:OH, and a 7:3 mixture of those two compounds strongly attracted the males in the field.  相似文献   

14.
Recently, larvae of Ostrinia were found feeding on the leopard plant Farfugium japonicum (Asteraceae), previously unrecorded as a host plant of this genus. The adult moths that developed from these borers were morphologically similar to, but distinct from, Ostrinia zaguliaevi, a monophagous species specialized for feeding on another Asteraceae plant, the butterbur Petasites japonicus. Although the taxonomical status of the moth feeding on F. japonicum is to be determined, distinct morphological differences in the adults strongly suggest this to be a new species (hereafter referred to as O. sp.). To gain an insight into the reproductive isolation between O. sp. and other members of the genus Ostrinia, the female sex pheromone and the males’ response to it were investigated using samples collected from F. japonicum. (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc), (Z)‐11‐tetradecenyl acetate (Z11‐14:OAc), (E)‐11‐tetradecenyl acetate (E11‐14:OAc), tetradecyl acetate, and (Z)‐11‐hexadecenyl acetate were identified as candidates for sex pheromone components by analyses using gas chromatographs coupled to a mass spectrometer (GC‐MS) and electroantennographic detector (GC‐EAD). A series of bioassays of male responses in a wind‐tunnel and a field cage indicated that the former three compounds are essential for attracting males, and the latter two have no synergistic effect on the attraction. We therefore concluded that Z9‐14:OAc, Z11‐14:OAc and E11‐14:OAc are the sex pheromone components of O. sp. Although the same three compounds are used as the sex pheromone components of O. zaguliaevi and another congener, Ostrinia zealis, the blend proportions differed greatly among the three (Z9‐14:OAc/Z11‐14:OAc/E11‐14:OAc = 18/76/6 in O. sp., 45/50/5 in O. zaguliaevi and 70/6/24 in O. zealis). Differences in sex pheromones could contribute to the reproductive isolation between O. sp. and the other two Ostrinia species if males of each species exhibit a narrow window of response to their own blend ratio.  相似文献   

15.
In 2010, abrupt outbreaks of the African armyworm, Spodoptera exempta (Walker), occured on the Tarama, Iriomote and Kikai Islands in southwestern Japan. Analysis by gas chromatography-electroantennographic detection (GC-EAD) revealed two EAG-active compounds on male antenna in crude extract of virgin females. These compounds were identified as (9Z)-9-tetradecenyl acetate (Z9-14:Ac) and (9Z,12E)-9,12-tetradecadienyl acetate (Z9E12-14:Ac) in ca. 90:10 ratio by subsequent GC-MS analyses. (11Z)-11-Hexadecenyl acetate (Z11-16:Ac), which had previously been identified as a third component in the Kenyan population, was not detected. Binary blends of Z9-14:Ac and Z9E12-14:Ac at ratios between 99:1 and 90:10 showed a potent attractiveness in the field, superior to that of virgin females and comparable to that of the three-component formulation determined in Kenya. For the population survey, a 98:2 blend was used. In Tarama, only a few moths of S. exempta were captured with a light trap during the night when more than 600 males were captured with synthetic sex pheromone; more S. exempta captures with a light trap had been reported than with sex-pheromone traps in Kenya. This indicates that the Okinawan population has different properties from the Kenyan population in pheromone composition and behavioral response to light.  相似文献   

16.
The female‐produced sex pheromone of the Durra stem borer, Sesamia cretica (Lederer) (Lepidoptera: Noctuidae), had been previously characterized as a 75:25 blend of (Z)‐9‐tetradecenol (Z9‐14:OH) and (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc) based on field trapping experiments. The low attraction of this blend in the field led us to further investigate the sex pheromone of this pest. Coupled gas chromatography with electroantennographic detection (GC‐EAD) analysis of female pheromone gland extracts consistently revealed three EAD‐active compounds. According to their GC retention times, mass spectra, and comparative EAG analyses with authentic standards, two of these compounds were found to be the previously reported components Z9‐14:OH and Z9‐14:OAc, whereas a third compound was identified as (Z)‐11‐hexadecenol (Z11‐16:OH). In wind tunnel experiments, the highest male responses were elicited by ratios of Z9‐14:OH, Z9‐14:OAc, and Z11‐16:OH, ranging from 90:1:9 to 90:5:5. In field tests, the 90:1:9 ratio of the blend loaded onto rubber septum dispensers was significantly more effective than single‐component, two‐component, and any other ratio of the three‐component blend. The greater effectiveness of this blend resulted in a more accurate detection of S. cretica flight activity compared with the previously reported two‐component blend.  相似文献   

17.
Three percent of E-strain Ostrinia nubilalis males fly upwind in response to the Ostrinia furnacalis pheromone blend [a 40:60 ratio of (E)-12-tetradecenyl acetate to (Z)-12-tetradecenyl acetate (E12-14:OAc to Z12-14:OAc)], in addition to their own pheromone blend [a 99:1 ratio of (E)-11-tetradecenyl acetate to (Z)-11-tetradecenyl acetate) (E11-14:OAc to Z11-14:OAc)]. We assessed the olfactory receptor neuron (ORN) responses of these behaviorally "rare" males versus those of normal males. For the three ORNs housed within each sensillum, we tested responsiveness to Z12-14:OAc, E12-14:OAc, Z11-14:OAc, E11-14:OAc, and the behavioral antagonist (Z)-9-tetradecenyl acetate (Z9-14:OAc). Z11-14:OAc, E11-14:OAc, and Z9-14:OAc stimulated ORNs exhibiting distinct small, large, and medium spike sizes, respectively. For rare and normal males, both Z12-14:OAc and E12-14:OAc usually elicited responses from the largest-spiking ORN. In many ORNs of normal males, Z12-14:OAc or E12-14:OAc stimulated the smaller-spiking ORN that is responsive to Z11-14:OAc. In rare males, detectable ORN responses from the smaller-spiking ORN in response to Z12- and E12-14:OAc were virtually non-existent. These differences in ORN tuning in rare males will tend to create an ORN firing ratio between the large- and small-spiking ORNs in response to the O. furnacalis blend that is similar to that elicited by the O. nubilalis blend.  相似文献   

18.
Athetis lepigone has been recorded in many countries in Europe and Asia, but it had never been documented as an agricultural pest until 2005. For the purpose of using the sex pheromone to control this pest, we conducted a study to identify the sex pheromone of A. lepigone by gas chromatography with an electroantennographic detector (GC‐EAD) and GC coupled with mass spectrometry (GC/MS) analyses. Three pheromone candidates were detected by GC‐EAD analysis in the extracts of the female sex pheromone gland, and two candidates were identified as (Z)‐7‐dodecenyl acetate (Z7‐12:OAc) and (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc) in a ratio of 1:5 by mass spectral analysis of natural pheromone components and dimethyl disulphide adducts. In the field male trapping test, the traps baited with the binary blend captured high number of males, while traps with single component hardly caught males, indicating that the two components are essential for the male attractiveness. In addition, the optimum ratios of Z7‐12:OAc and Z9‐14:OAc were determined as 3:7–7:3, and the best doses for the binary blend (at ratio of 3:7 between Z7‐12:OAc and Z9‐14:OAc) were 0.25–0.5 mg/trap, based on the number of male catches. The identification of a highly attractive sex pheromone will help in developing efficient strategies for monitoring and control of A. lepigone.  相似文献   

19.
The effects on olfaction of N-ethylmaleimide (NEM), a specificreagent of free sulfhydryl groups, were studied in the mothMamestra brassicae. The antennae of male M.brassicae bear twotypes of specialist receptor neurons involved in pheromone communication.One type is tuned to (Z)-11-hexadecenyl acetate (Z11-16:Ac),the main pheromone component; the second type is tuned to (Z)-9-tetradecenylacetate (Z9-14:Ac), an interspecific inhibitor not producedby the females of this species. Vapours of NEM irreversiblyinhibited the electro-antennographic (EAG) responses to Z11-16:Acand Z9-14:Ac. When Zll-16:Ac was applied before and during NEMtreatment, the responses to Z9-14:Ac were preserved and someprotection was observed in the responses to Zll-16:Ac. In return,Z9-14:Ac partially prevented the disappearance of responsesto Zll-16:Ac but not to Z9-14:Ac. A third compound, hexadecylacetate (16:Ac), found in the pheromone gland, but not detectedby the antennal receptors, did not prevent the inhibition causedby NEM.  相似文献   

20.
Pheromone production in the female turnip moth, Agrotis segetum, is under the control of a brain factor. This factor was demonstrated to be a proteinaceous substance termed pheromone biosynthesis activating neuropeptide-like substance (PBAN-like substance). The sex pheromone of Swedish A. segetum includes (Z)-5-decenyl acetate, (Z)-7-dodecenyl acetate, and (Z)-9-tetradecenyl acetate as major components. Decapitation of a female decreased pheromone production significantly. Pheromone production was restored by injection of homogenates of either male or female brain-suboesophageal ganglion or the corpora cardiaca alone. Pheromonotropic activity was also found in homogenates of the female thoracic ganglion and abdominal ganglion that were obtained during scotophase. Injection of female brain and thoracic ganglion homogenates made from insects during the scotophase induced two and four times as much Z7-12:OAc, respectively, as injection with similar homogenates from photophase. As little as one-eighth female equivalent (FE) brain homogenate was sufficient to increase the amount of Z7-12:OAc. The effect of brain homogenate on pheromone titer reached its maximum after 30 min. The activity of the PBAN-like substance present in female brain extracts was not correlated to the age of the donor. Injection of hemolymph collected during either photophase or scotophase into decapitated females did not increase the pheromone titer. The target site of the PBAN-like substance was not the pheromone gland, and the ventral nerve cord was not involved in the transportation of the PBAN-like substance, which implies a mode of action different from what has been reported in other moths. Brain homogenates obtained during photophase from females of African A. segetum, Spodoptera littoralis, or Ostrinia nubilalis as well as synthetic Bombyx-PBAN also induced pheromone production in decapitated Swedish female A. segetum. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号