首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Leiothrix curvifolia var. lanuginosa and Leiothrix crassifolia are endemic and sympatric species in the Brazilian rupestrian grasslands, a habitat that has a predominance of sandy and shallow soils with low water retention. Based on the premise that soil moisture is one of the abiotic factors that affects most reproduction in plants, we hypothesized that the flowering phenology events and establishment of sexual and vegetative offspring would occur in the periods of higher soil water availability. We marked 478 ramets distributed among 100 genets of L. curvifolia var. lanuginosa and 693 ramets distributed among 100 genets of L. crassifolia, so that they could be observed monthly along the two rainy seasons from December 2003 to 2004. Both species showed phenological synchrony in the flower heads and seedlings production with soil moisture availability. Seedling mortality was intense in the dry period. Unlike the seedlings, the ramets survived was 100%. The greater capacity of ramets to survive can result from a much greater biomass compared with seedlings, and ramets become adult much faster. We conclude that for a successful seedling establishment, the synchronization with the rainy season was required, and moreover, that repeated seedling recruitment can be important for the maintenance of local populations of these species which suffer from high seedling mortality in the drought period. It is likely that the coincidence of the rainy period with seedling establishment is an important factor that determines the flowering phenological pattern of L. curvifolia var. lanuginosa and L. crassifolia in rupestrian grasslands.  相似文献   

2.
B. Erschbamer  U. Buratti  J. Winkler 《Oecologia》1998,115(1-2):114-119
The demography of two closely related alpine sedges, Carex curvula subsp. curvula and Carex curvula subsp. rosae (=C. curvula and C. rosae) has been investigated on their typical sites in the Central Alps. Both species proliferate vegetatively and develop dense tussocks but they show different dominance behaviours in their respective grasslands. It was hypothesized that this may be caused by different growth abilities. The main aim of the study was to compare the vegetative growth of the species under field conditions, under competition-free conditions and under changed soil conditions. An attempt was also made to clarify whether vegetative growth is density dependent. Permanent plots were established in the respective grasslands of the two species and the ramet density was counted over 3 years. Groups of 10 and of 30 ramets of each species were grown in pots with typical and with alien substrate and their growth was observed for 5 years at the field site. The grassland populations of both species were very stable and the overall ramet growth rate (λ) was close to 1.0. Within the pots, both species reached a high ramet number. Only the group of 30 ramets of C. curvula on alien soil could not recover from the transplantation shock. Within the pots, C. rosae showed a greater ramet turnover and a higher increase in ramets than C. curvula. On their native substrate, both species had a significantly higher ramet increase than on the alien substrate. Ramet growth was found to be density dependent for both species, the increases recorded for the groups of 10 being significantly greater than for the groups of 30. Although C. curvula produced fewer ramets than C. rosae, the aboveground dry weight of the former was significantly higher. This may be decisive for its greater competitive success in closed grasslands. Received: 12 April 1997 / Accepted: 12 December 1997  相似文献   

3.
Because monocarpic perennial plants have only one reproductive opportunity in their entire life, they need to ensure offspring production. Some plants reproduce both sexually and vegetatively, and vegetative reproduction could possibly compensate for seed production. Therefore, the role and significance of these reproductive modes is likely to differ between monocarps and polycarps, which can reproduce many times. Cardiocrinum cordatum var. glehnii is a monocarpic perennial that reproduces both sexually and vegetatively (bulblet formation). Here, we investigated the characteristics and contribution to population maintenance of sexual and vegetative reproduction to reveal the significance of these two reproductive modes in this species. First, we found that bulblet formation occurred in plants after the three‐leaved rosette stage. Second, resource allocation experiments revealed that although resources were mainly invested in fruit maturation after the flowering season, resource allocation was switched from sexual reproduction to vegetative reproduction if seed production was insufficient. Third, the outcrossing rate in this species varied greatly according to the environment surrounding the population. However, reproductive assurance by selfing kept seed production stable even if flowers did not receive sufficient pollen for full seed set via outcross pollination, and moreover, there was no intensive inbreeding depression. Finally, genotypic identification of ramets suggested that daughter ramets derived from vegetative reproduction received the space that the mother flowering ramet had occupied until the previous year.  相似文献   

4.
Lianas are important components of forest communities with a considerable impact on overall forest structure and function. Lianas are characterized by extensive clonal reproduction on the forest floor, which is important for their establishment and growth. Previous studies have suggested that clonal reproduction strategies vary substantially among liana species; however, few studies have quantitatively evaluated the clonality strategy in multiple co-occurring liana species. The primary objective of the present study was to evaluate the relative contribution of clonal reproduction and to understand the clonal proliferation processes in co-occurring liana species by assessing both small stems on the forest floor and mature stems that climbed trees. The clonal reproduction strategy in four common liana species (stem twiner: Wisteria floribunda; root climbers: Schizophragma hydrangeoides, Euonymus fortunei and Rhus ambigua) in a 6-ha plot and a belt transect within an old-growth temperate forest in central Japan was evaluated using genetic analysis. The contribution of clonal reproduction was smaller in root climbers than in W. floribunda. All W. floribunda genets with small ramets in the understory had genetically identical ramets that climbed trees, whereas few such ramets were found in root climbers. This indicates that W. floribunda mature ramets laterally produce small ramets via clonal proliferation, whereas seedlings of root climbers grow horizontally to climb trees. The results indicate that the clonal reproduction processes differ greatly among lianas and the clonal growth in lianas plays a contrasting role in their life-history strategy.  相似文献   

5.
Katja Geissler  Axel Gzik   《Flora》2008,203(5):396-408
Cnidium dubium is a highly endangered, perennial river corridor plant in Central Europe. Here we summarise a 4-year field study of its ramet demography, growing in two different flood meadows in the Lower Havel River Valley in northeastern Germany, emphasising the influence of site-specific abiotic factors, mowing and the summer flood of 2002.We recorded 1658 ramets at densities between 2 and 180 ramets m−2, which varied over area and time, indicating a high small-scale turnover of this species within grasslands. The half-life of the different ramet cohorts was estimated to range from 0.1 to 1.3 years, but single ramets of more than 4 years old were also found. Ramets are monocarpic: they propagate only once in their life. The highest probability of a vegetative ramet becoming a flowering stalk was 11.6%. Ramet density, cumulative number of newly produced ramets per year, leaf length, leaf age, reproductive growth and recovery from the summer flood of 2002 varied, depending on site. C. dubium had a higher performance at sites in intermediate zones of the overall flooding gradient compared with higher zones. Flooding stress is the controlling factor for the lower limit of its performance, while there was no evidence for an upper limit controlled by summer drought. Mowing slightly increased the cumulative number of leaves per ramet, but it decreased the size of new leaves and also the summer above-ground biomass per ramet. As a consequence, the most marked effect was that fewer ramets entered the generative life stage, but the plants were able to keep their overall reproductive performance on a level independent of mowing. Knowledge of basic growth patterns of C. dubium in natural populations could help to explain the species rareness, and may also suggest appropriate strategies to manage its survival.  相似文献   

6.
Abstract. We analysed the relationship between seed traits (weight, shape and dispersal structures) and the abundance and habitat segregation of Mediterranean grassland species. To take into account possible correlations with other plant traits, the study also includes 5 vegetative traits (growth form, plant longevity, clonality, onset of flowering and plant size) of commonly accepted functional importance. Data were recorded for 85 species from dehesa grasslands in central Spain. Species abundance was measured in upper (dry and less productive, high stress) and lower (moist and more productive, low stress) slope zones in the same area. Habitat segregation was estimated using an index based on the relative frequencies of species in upper and lower slope zones. Multiple regression models were fitted using species, as well as phylogenetically independent contrasts, as data points. Annual small‐seeded species without specialised dispersal structures are over‐represented in dehesa grasslands. Abundance was negatively related to seed weight in upper slope zones. None of the recorded plant traits were related to abundance in the lower slope zones. Habitat segregation was mainly related to seed weight, but also to some vegetative traits. Annual, early flowering and small‐seeded species were relatively more abundant in the upper than the lower slope zones. This pattern is independent of phylogeny. Our results suggest that in dry Mediterranean grasslands, abundance of many species is determined by dispersal (production of numerous small seeds) rather than by competitive ability.  相似文献   

7.
《Flora》2005,200(3):275-284
Studies in plant demography are primarily done at the level of ramets and typically collect ramet-related parameters such as ramet size, type and history. This approach ignores possible effects of factors associated with higher levels, such as genet or tussock. This is particularly important in perennial resprouting herbs with persistent root that consists of many ramets as interaction between ramets, both by competition and by resource sharing, are likely to be intense in these plants. This study investigates effects of tussock-level parameters (age, size and ramet position within tussock and ramet density) on performance of individual ramets in two tussock-forming resprouting herbs (Tanacetum vulgare and Centaurea jacea).The results show that position of a ramet within tussock did not affect ramet growth, but had significant effects on flowering and survival in both species. The direction of the effect differed between the two species; marginal ramets were more successful in T. vulgare, while central ramets were more successful in C. jacea. In addition, tussock age had a significant effect on ramet flowering and survival in T. vulgare. Both these effects are likely to be due to the more competitive life form of T. vulgare, which is restricted to temporary habitats with intense competition. C. jacea is a species of mown or grazed grasslands with lower productivity, which are more stable and where competition is weaker. The effects of the number of neighboring ramets and of the tussock size were significant, but often locality-specific.The results indicate that although many important effects of tussock-related parameters exist, their direction and magnitude differ between species or even populations and are thus not easily predictable. Neglecting these effects, however, is likely to make the demographic models weaker.  相似文献   

8.
Recent agricultural intensification in tropical countries has led to increased nutrient input and eutrophication of wetland ecosystems. Higher nutrient levels often lead to changes of vegetation structure and, eventually, shift in species dominance and loss of ecosystem services. We studied the dynamics of species shift in a manipulative nutrient enrichment experiment (+N, +P, +N&P) in oligotrophic wetlands of northern Belize distributed along a salinity gradient. We monitored spread and biomass accumulation of an introduced single individual of Typha domingensis within a 4 years period. The focus was on speed of the spreading and the relative importance of neighbouring ramets in this process. Large differences were found between control and N addition plots versus P and N&P addition plots. The ramets planted in control and N plots died or barely survived, while ramets in P and N&P plots grew vigorously and almost completely outcompeted original vegetation represented by Eleocharis spp. Final numbers of ramets were 2 and 576 per 100 m2 for control and N versus P and N&P plots. The filling dynamics of P-enriched plots of differing salinity changed in time. The spreading was delayed in low salinity plots compared to high and medium salinity plots, although it finally reached comparable rates and values. We attribute this delay to originally denser vegetation and less suitable soil conditions in low salinity plots than to a direct salinity effect. Eventually, the number of ramets stabilized and often even decreased, probably due to self-thinning. Spatiotemporal model extrapolating observed vegetative spread suggested that in P-enriched conditions, a clone originating from a single individual is able to cover 1 ha plot completely within 9 years. We conclude that P-enrichment strongly increases the possibility of fast takeover of Belizean wetlands by Typha domingensis. Eventually, such species change can highly increase potential larval habitat for malaria transmitting mosquitoes.  相似文献   

9.
Background: The degradation of alpine meadows on the Qinghai-Tibetan Plateau (QTP) has an impact on vegetation recruitment from seedlings and ramets.

Aims: Understanding the relative contribution of recruitment by seedling and ramet in alpine meadows is for the ecological restoration of degraded grasslands on the QTP.

Methods: An experiment was conducted to investigate seedling and ramet densities, species composition and their relationships with standing vegetation in plots representative of non-degraded (ND), lightly (LD), moderately (MD) and severely degraded (SD) alpine meadows.

Results: With increasing degradation and the reduction in vegetation cover, the number of seedlings and ramets declined. The proportion of young plants arising from seedlings was low, with the majority of species reproducing clonally. The establishment of seedlings of forbs in SD meadows led to species-rich, forb-dominant vegetation in these areas.

Conclusions: LD and MD meadows appear to be able to be managed by reduced grazing for the restoration of grass- and sedge-dominated pastures. In contrast, restoration of SD meadows will require additional intervention, such as of seeding and weed eradication.  相似文献   

10.
To predict the growth and spread of an insect population introduced for the biological control of weeds, one must first understand the factors affecting the movement of individuals in the population. The purpose of this study was to determine how the dispersal rate of Aphthona lacertosa (Rosenhauer) (Chrysomelidae) was affected by conspecific density and by the characteristics of leafy spurge (Euphorbia esula L.: Euphorbiaceae) in patches where these beetles feed. In 2002 in Manitoba and in 2003 in Alberta, Canada, between 200 and 2500 insects were released in small patches (<10 m2) of spurge. The number and location of beetles within patches was monitored over subsequent days. In 1 m2 plots within patches, spurge ramet density, the proportions of vegetative and reproductive ramets, and ramet height were measured. In both years, beetle movement within patches and emigration from patches, was not affected by conspecific density. In Manitoba in 2002, beetles aggregated non-randomly on either vegetative or reproductive ramets within plots, but plot characteristics were not related to the formation of aggregations. In Alberta in 2003, plots in which beetles aggregated had significantly higher spurge density but did not differ in either the proportion of vegetative ramets or in the amount of non-spurge vegetation. These results suggest that density-dependent dispersal does not limit the population's ability to reach densities up to 2500 beetles/m2.  相似文献   

11.
Females and males of sexually dimorphic species have distinct resource demands due to differential allocation to reproduction. Sexual allocation theory predicts that functional traits will diverge between sexes to support these demands. However, such dimorphism may be masked by the impact of current reproduction on source-sink interactions between vegetative and reproductive organs. We ask whether natural selection has led to genetic dimorphism in homologous physiological traits between sexes of the dioecious willow shrub, Salix glauca. In a common garden experiment we compared physiological responses to drought stress by male and female ramets in the absence of confounding demands from reproductive structures. Ramets experienced similar pre-dawn leaf water status (Ψl) as parental genets in flower within the natural population, indicating that experimental dry-down mirrored environmental conditions in nature. Male and female ramets achieved similar instantaneous water use efficiency, based on the ratio of carbon gain to water loss, under wet and dry conditions. However, female ramets experienced greater water stress (i.e., more negative Ψl) than males under dry conditions. Lower Ψl for female ramets may partly reflect the maintenance of conductance under drought; males, in contrast, maintain Ψl under drought by reducing conductance. Differences between sexes in terms of conductance and leaf water status of the vegetative ramets were absent in a concomitant comparison of parental flowering plants. Our results show (1) genetic divergence in physiology between sexes of S. glauca occurs in the absence of gender-specific reproductive sinks, (2) males are the more physiologically plastic sex with respect to water use, and (3) paradoxically, divergence in water relations between sexes is not detectable at sexual maturity under natural conditions.  相似文献   

12.
Understanding which environmental variables and traits underlie adaptation to harsh environments is difficult because many traits evolve simultaneously as populations or species diverge. Here, we investigate the ecological variables and traits that underlie Mimulus laciniatus’ adaptation to granite outcrops compared to its sympatric, mesic‐adapted progenitor, Mimulus guttatus. We use fine‐scale measurements of soil moisture and herbivory to examine differences in selective forces between the species’ habitats, and measure selection on flowering time, flower size, plant height, and leaf shape in a reciprocal transplant using M. laciniatus × M. guttatus F4 hybrids. We find that differences in drought and herbivory drive survival differences between habitats, that M. laciniatus and M. guttatus are each better adapted to their native habitat, and differential habitat selection on flowering time, plant stature, and leaf shape. Although early flowering time, small stature, and lobed leaf shape underlie plant fitness in M. laciniatus’ seasonally dry environment, increased plant size is advantageous in a competitive mesic environment replete with herbivores like M. guttatus’. Given that we observed divergent selection between habitats in the direction of species differences, we conclude that adaptation to different microhabitats is an important component of reproductive isolation in this sympatric species pair.  相似文献   

13.
In plant species, when clonal growth produces a patchy structure and flowering ramets are clustered, the amount of pollen contributing to reproductive success is often regulated by pollinator efficiency and geitonogamy. The spatial population structure may influence reproductive success. We examined the clonal structure, the spatial ramet distribution, and their combined effects on fruit set in a natural population of the insect-pollinated, self-incompatible clonal herb, Convallaria keiskei, in northern Japan. The number of shoots, flowers, and fruits in 1-m2 quadrats were counted at every 5 m grid point in an established 100 × 90-m study plot. From all the quadrats where shoots existed, leaf samples were collected for allozyme analysis. Using the two spatial parameters of flowering ramet densities and genotypes, we then constructed individual-based fruit-set models. A total of 236 quadrats contained shoots, and 135 contained flowering ramets, which indicated expanded distribution of this plant throughout the study plot, while shoots, flowers and fruits all showed clustering distributions. Allozyme analysis of 282 samples revealed 94 multilocus genotypes. The largest clone extended to more than 40 m, whereas 56 genotypes were detected in only one sample. Several large clones and many small clones were distributed close to each other. Fine-scale spatial modelling revealed that the neighbouring flower numbers of different genotypes, compared with local genet or flower diversity, more influenced fruit set, in which the range of the neighbour was 14.5 m. These findings indicate that the compatible pollen dispersed by insect pollinators has a significant effect on sexual reproduction, in this C. keiskei population. Consequently, the spatial structure, which includes both genet distribution and clonal expansion by ramets, had a significant effect on pollination success.  相似文献   

14.
Walck  Jeffrey L.  Baskin  Jerry M.  Baskin  Carol C. 《Plant Ecology》1999,145(1):133-147
Results of field and glasshouse experiments on Solidago shortii, and our observations on this species over many years, were used to construct a conceptual model of the roles of succession, light, soil nutrients and disturbance on population vigor and maintenance of this federal-endangered species. As cover of woody vegetation increased at a population site between 1986 and 1992, number of flowering ramets of S. shortii significantly decreased but number of vegetative ramets remained nearly constant. Adult plants transplanted into a redcedar thicket and those shaded in a glasshouse produced many fewer flowering ramets and capitula per flowering ramet and less biomass and had higher mortality than those in the open. Seedlings/juveniles shaded in a glasshouse had significantly less dry biomass; lower RGR, NAR, leaf area and root/shoot ratio and higher LAR, SLA and LWR than nonshaded ones. In a field site and glasshouse, fertilized plants (NPK) consistently had more flowering ramets and capitula per flowering ramet than nonfertilized ones. Hierarchy of dry weight of plants grown in a glasshouse in soils derived from five types of bedrock was phosphatic limestone > calcareous shale > sandstone > black shale = dolomite. Flowering and biomass production in the field-fertilizer and soil-type experiments were associated closely with levels of P. Number of flowering ramets significantly increased in plants transferred from shaded to nonshaded glasshouse conditions, but no such increase occurred after opening the canopy above plants in a thicket. Both high light and high nutrient levels apparently are necessary to maintain high vigor of S. shortii. In areas subject to invasion by woody plants, periodic high intensity disturbance may be required to prevent population extirpation.  相似文献   

15.
Pseudovivipary is an asexual reproduction strategy correlated with extreme environments. Comanthera nivea occurs in habitats with low water retention. This study investigated the effect of soil moisture availability on C. nivea pseudoviviparous reproduction and flowering. We established four permanent plots (1 × 1 m), two in a shaded area, in which we marked 15 rosettes in each plot, and two in a full-sun area, in which we marked 10 rosettes in each plot. We made monthly observations from August 2016 to January 2017, to quantify the number of flower heads and of pseudoviviparous ramets per rosette, and measured soil moisture. Our results showed a high correlation between soil moisture and flowering. Flowering in C. nivea occurs in periods of increased soil moisture, whereas pseudoviviparous reproduction occurs in the driest period. The advantages of a pseudoviviparous canopy-forming strategy in habitats with scarcity of water in the soil are discussed.  相似文献   

16.
Mountain vegetation is often considered highly sensitive to climate and land-use changes due to steep environmental gradients determining local plant species composition. In this study we present plant species compositional shifts in the Tatra Mts over the past 90 years and discuss the potential drivers of the changes observed. Using historical vegetation studies of the region from 1927, we resurveyed 76 vegetation plots, recording the vascular flora of each plot using the same methodology as in the original survey. We used an indirect method to quantify plant species compositional shifts and to indicate which environmental gradients could be responsible for these shifts: by calculating shifts in estimated species optima as reflected in shifts in the ecological indicator values of co-occurring species. To find shifts in species composition, focusing on each vegetation type separately, we used ordination (DCA). The species optimum changed significantly for at least one of the tested environmental gradients for 26 of the 95 plant species tested; most of these species changed in terms of the moisture indicator value. We found that the strongest shifts in species composition were in mylonite grassland, snowbed and hygrophilous tall herb communities. Changes in precipitation and increase in temperature were found to most likely drive compositional shifts in vegetation resurveyed. It is likely that the combined effect of climate change and cessation of sheep grazing has driven a species composition shift in granite grasslands communities.  相似文献   

17.
The effects of browsing by sika deer (Cervus nippon) on subalpine vegetation (Betula forests and tall grasslands) were investigated in the South Alps National Park, Japan. The browsing ratio (the number of browsed quadrats to the number of quadrats occurring in each plot) was significantly higher in Betula forests than in grasslands. A significant negative correlation was found between the browsing ratio and some species diversity indices (number of species and the Shannon–Wiener diversity index) in the Betula forests, but not in grasslands. The frequency of occurrence and the number of preferred browse species were significantly higher in Betula forests than in grasslands. Browsing was not always the most serious on the most frequent vegetation. For example, Polemonium caeruleum L. subsp. yezoense var. nipponicum, which is listed as vulnerable on Japan’s red list of threatened species and was low in occurrence in Betula forests compared to grasslands, was more browsed in Betula forests than in grasslands. Less frequently occurring species subjected to more browsing could easily disappear. The disappearance of such species would exert a strong effect on the species pool in the area.  相似文献   

18.

Background and Aims

In clonal plants producing vegetative offspring, performance at the genet level as well as at the ramet level should be investigated in order to understand the entire picture of the population dynamics and the life history characteristics. In this study, demography, including reproduction and survival, the growth patterns and the spatial distributions of ramets within genets of the clonal herb Convallaria keiskei were explored.

Methods

Vegetative growth, flowering and survival of shoots whose genets were identified using microsatellite markers were monitored in four study plots for 3 years (2003–2005). The size structures of ramets in genets and their temporal shifts were then analysed. Their spatial distributions were also examined.

Key Results

During the census, 274 and 149 ramets were mapped in two 1 × 2 m plots, and 83 and 94 ramets in two 2 × 2 m quadrats. Thirty-eight genotypes were identified from 580 samples. Each plot included 5–18 genets, and most ramets belonged to the predominant genet(s) in each plot. Shoots foliated yearly for several years, but flowering ramets did not have an inflorescence the next year. A considerable number of new clonal offspring persistently appeared, forming a bell-shaped curve of the size structure of ramets in each genet. Comparing the structures modelled by the normal distributions suggested variation among ramets belonging to a single genet and variation among genets. Furthermore, spatial analyses revealed clumped and distant distributions of ramet pairs in a genet, in which the distant patterns corresponded to the linearly elongating clonal growth pattern of this species.

Conclusion

Characteristics of ramet performances such as flowering and recruitment of clonal offspring, in addition to growth, played a large part in the regulation of genet dynamics and distribution, which were different among the studied genets. These might be characteristics particularly relevant to clonal life histories.Key words: Clonal plant, Convallaria keiskei, demography, genet, genetic identification, growth pattern, life history, ramet, spatial distribution  相似文献   

19.
Adaptive responses to past climate change may play an important role in the persistence of high‐mountain plants, which are vulnerable to global warming. Armeria caespitosa is a high‐mountain plant, endemic to the Iberian Central Range. Differences in abiotic environment along the elevational gradient impose two opposing stress gradients (i.e. water stress and duration of the growth season) on the species. Furthermore, the species is found in two interspersed, contrasting microhabitats (rocky outcrops and dry cryophilic grasslands) that have different effects on plants depending of the elevation. As a result of this, the species shows great among‐population variation in many reproductive and vegetative traits. We used a common garden approach to determine whether this phenotypic variation has a genetic basis or is the result of plastic responses shaped by heterogeneous environmental conditions. Plants from the high‐elevation edge and dry cryophilic grasslands flowered earlier and produced more viable fruits but were smaller. These results confirm that among‐population variation in flowering phenology and reproductive performance traits in A. caespitosa is partially genetically based. The results also show that the stronger selection response in favour of early‐flowering individuals in populations at the low‐elevation edge did not correspond with the greater proportion of early‐flowering individuals. Genetic variability associated with flowering onset may be relevant in coping with the impacts of ongoing global warming. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 384–395.  相似文献   

20.
Dwarf bamboos in the genus Sasa are believed to be long-lived, synchronously flowering, and monocarpic plants. However, the monocarpy of dwarf bamboo has not been confirmed, because whether all ramets within one genet flower at the same time cannot be determined without differentiating the genetic structure among ramets. This study aims to evaluate the reproductive traits of Sasa pubiculmis by verifying the monocarpy and physiological integration between flowering ramets and non-flowering ramets during a 4-year flowering period. One genotypically identified genet, which covered an area of approximately 3 ha, had both flowering and non-flowering patches of ramets during the 4-year flowering period (2004–2007). A fraction of the flowering genet remained non-flowering during the 4 years of observation, and did not die after mass flowering. Flowering ramets were physically connected to non-flowering ramets via rhizomes, and assimilated 13C was allocated from non-flowering ramets to flowering ramets. Consequently, we clarified that this dwarf bamboo potentially has polycarpic reproductive traits rather than monocarpic, and a genet can keep rhizomes and non-flowering patches alive to sustain the organism after mass flowering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号