首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evoked potential audiograms were measured in 13 Pacific bottlenose dolphins (Tursiops truncatus gilli) to determine the variability in hearing sensitivity and range of hearing. The auditory evoked potential system used a transducer embedded in a suction cup to deliver sinusoidal amplitude modulated tones to each dolphin through the pan region of the lower right jaw. Evoked potentials were recorded noninvasively using surface electrodes, and hearing thresholds were estimated by tracking the amplitude of the envelope following response, an evoked potential that is phase‐locked to the stimulus modulation rate. Frequencies tested ranged from 10 to 180 kHz in each animal. Variability in the range of hearing and age‐related reductions in hearing sensitivity and range of hearing were consistent with those observed in Atlantic bottlenose dolphins. Comparison of audiograms to a captive population of Atlantic bottlenose dolphins demonstrated that the Pacific bottlenose dolphins tested in this study had significantly lower thresholds at frequencies of 40 and 60–115 kHz. Differences in thresholds between the groups are unlikely to be due to methodological factors.  相似文献   

2.
Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual''s perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.  相似文献   

3.
In experiments on healthy children as well as on children with inborn and postamputation stumps of the forearm, studies have been made of the relationship between the level of tactile sensitivity in the skin of the forearm and the level of its muscular motor activity; these studies were performed using focused ultrasound in children at the age of 7, 10 and 14 years. It was found that with the increase in motor activity of the forearm, irrespectively of the age, tactile thresholds decrease. The success of prosthetic appliance depends on the ratio between skin tactile sensitivity and motor activity of the forearm. The lowest thresholds were found in 10-year children and in a zone innervated by the median skin nerve of the forearm.  相似文献   

4.
Odontocetes are believed to receive sounds primarily through the pan bone region of the lower jaw although much variation in jaw morphology exists among species. In order to further examine this jaw hearing hypothesis we tested the head receiving sensitivity and directional hearing of a beluga whale, Delphinapterus leucas. Hearing thresholds were measured using auditory evoked potentials (AEPs). The subject proved to have highly directional hearing for far-field click stimuli similar to that of bottlenose dolphins and more directional than the harbor porpoise. For near-field jawphone stimulation, the beluga's lowest thresholds were found when click stimuli were presented at the rostrum tip (76 dB re: 1 μPa) although thresholds from the pan bone region stimulation were only 2–3 dB higher. Stimulation at and behind the external auditory meatus were elevated by nearly 20 dB. Stimuli presented at the surface of the melon did not generate detectable AEP responses, although sound levels of up to 142 dB were employed. Latencies of responses were generally shortest for meatal stimulation and increased with distance. Results support a shaded receiver model for odontocete hearing but how received sounds are filtered and shaded may depend on species. We also suggest that odontocete hearing thresholds are not necessarily lowest through the pan bone region. Rather, hearing pathway variations appear to exist among odontocete species and are at least partially dependent on head morphology.  相似文献   

5.
Using the proboscis extension response we conditioned pollen and nectar foragers of the honey bee (Apis mellifera L.) to tactile patterns under laboratory conditions. Pollen foragers demonstrated better acquisition, extinction, and reversal learning than nectar foragers. We tested whether the known differences in response thresholds to sucrose between pollen and nectar foragers could explain the observed differences in learning and found that nectar foragers with low response thresholds performed better during acquisition and extinction than ones with higher thresholds. Conditioning pollen and nectar foragers with similar response thresholds did not yield differences in their learning performance. These results suggest that differences in the learning performance of pollen and nectar foragers are a consequence of differences in their perception of sucrose. Furthermore, we analysed the effect which the perception of sucrose reward has on associative learning. Nectar foragers with uniform low response thresholds were conditioned using varying concentrations of sucrose. We found significant positive correlations between the concentrations of the sucrose rewards and the performance during acquisition and extinction. The results are summarised in a model which describes the relationships between learning performance, response threshold to sucrose, concentration of sucrose and the number of rewards. Accepted: 14 April 1999  相似文献   

6.
The aim of this work was to study the postnatal ontogenetic development of Pontoporia blainvillei skull, identifying major changes on shape, and relating them to relevant factors in the life history of the species. We analyzed a complete ontogenetic series (73♂, 83♀) with three‐dimensional geometric morphometric techniques. Immature dolphins showed a very well‐developed braincase and a poorly developed rostrum, and the principal postnatal changes affected the rostrum and the temporal fossa, both structures implied functionally to the feeding apparatus, thus suggesting a specialized mode for catch fast prey in P. blainvillei. Osseous elements associated with sound production were already well developed on immature dolphins, suggesting the importance of this apparatus since the beginning of postnatal life. Sexual dimorphism was detected on both shape and size variables. Females were bigger than males, in accordance with previous studies. Shape differences between sexes were found on the posterior part of premaxillaries and external bony nares (P < 0.01), suggesting that this sexual dimorphism is related to differences on vocalization capabilities. J. Morphol. 275:1366–1375, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Two male Florida manatees (Trichechus manatus latirostris) demonstrated sensitive tactile discrimination in a two‐alternative forced choice task, using a modified staircase method. Stimuli were acrylic plates with vertical gratings of ridges and grooves. The standard stimulus, present on every trial, had 2 mm gratings and the comparison stimuli had wider gratings. The blindfolded subjects were trained to demonstrate discrimination by pressing the target with wider gratings. Discrimination thresholds (75% correct) for the subjects were 2.05 mm and 2.15 mm, corresponding to Weber fractions of 0.025 and 0.075, respectively. These results indicate thresholds on similar stimuli comparable to humans (index finger tasks) and better than harbor seals, Phoca vitulina, and the closely related Antillean manatee, Trichechus manatus manatus. Memory for the tactile task was quite stable for both subjects, over 2 yr in the case of one of the subjects. Video analysis of responses indicated that bristle‐like hairs, perioral bristles, and skin on the oral disk were involved in the discrimination response.  相似文献   

8.
The tactile and thermal sensitivity of diverse regions of the human body have been documented extensively, with one exception being the scalp. Additionally, sensory changes may accompany the hair loss from the scalp in androgen-related alopecia (ARA), but formal quantitative sensory testing (QST) has not been reported in respect of this. Therefore, light touch detection thresholds were obtained at nine scalp sites and one forehead site, using Semmes–Weinstein filaments (Von Frey hairs), and for warming and cooling from skin baseline temperature, using 28 and 256?mm2 thermodes. Affective, thermal, and nociceptive sensations experienced at thermal detection threshold were quantified. Thirty-two male participants were recruited, 10 of whom had normal hair coverage, 12 of whom had shaved scalp but with potentially normal hair coverage, and 10 of whom exhibited ARA to some extent. The scalp was relatively insensitive to tactile and thermal stimulation at all tested sites, especially so along the midline and near the apex of the skull. Threshold level warm stimuli were rated less pleasant, the less sensitive the test site. After correction for age-related changes in sensitivity, bald scalp sites were found more sensitive to cooling than the same sites when shaved, consistent with prior informal reports of increased sensitivity for some scalp sensations in ARA. QST on hair-covered sites was subject to methodological issues that render such testing non-ideal, such as bias in measurement of resting skin temperatures, and the near impossibility of delivering filament stimuli to the scalp skin without disturbing neighboring hairs.  相似文献   

9.
The physical habitat of cetaceans found along the continental slope in the north-central and western Gulf of Mexico was characterized from shipboard sighting data, simultaneous hydrographic measurements, and satellite remote sensing. The study area was encompassed by the longitude of the Florida-Alabama border (87.5°W), the southernmost latitude of the Texas-Mexico border (26.0°N), and the 100-m and 2,000-m isobaths. Shipboard surveys were conducted seasonally for two years from April 1992 to May 1994. A total of 21,350 km of transect was visually sampled in an area of 154,621 km2. Sighting localities of species in the study area were differentiated most clearly with bottom depth. Atlantic spotted dolphins (Stenella frontalis) were consistently found in the shallowest water on the continental shelf and along the shelf break. In addition, the bottom depth gradient (sea floor slope) was less for Atlantic spotted dolphins than for any other species. Bottlenose dolphins (Tursiops truncatus) were found most commonly along the upper slope in water significantly deeper than that for Atlantic spotted dolphins. All the other species and species categories were found over deeper bottom depths; these were Risso's dolphins (Grampus griseus), short-finned pilot whales (Glob-icephala macrorhynchus), pygmy/dwarf sperm whales (Kogia spp.), roughtoothed dolphins (Steno bredanensis), spinner dolphins (Stenella longirostris), sperm whales (Physeter macrocephalus), striped dolphins (Stenella coeruleoalba), Mesoplodon spp., pantropical spotted dolphins (Stenella attenuata), Clymene dolphins (Stenella clymene) and unidentified beaked whales (Ziphiidae). Risso's dolphins and short-finned pilot whales occurred along the upper slope and, as a subgroup, were significantly different from striped dolphins, Mesoplodon spp., pantropical spotted dolphins, Clymene dolphins, and unidentified beaked whales, which occurred in the deepest water. Pygmy/dwarf sperm whales, rough-toothed dolphins, spinner dolphins, and sperm whales occurred at intermediate depths between these two subgroups and overlapped them.  相似文献   

10.
Lobomycosis (lacaziosis) is a chronic fungal disease of the skin that affects only dolphins and humans. Previous studies have shown a high prevalence of lobomycosis in bottlenose dolphins (Tursiops truncatus) from the Indian River Lagoon, Florida (IRL). We studied the occurrence and distribution of lobomycosis in the IRL using photo-identification survey data collected between 1996 and 2006. Our objectives were to (1) determine the sensitivity and specificity of photo-identification for diagnosis of lobomycosis in free-ranging dolphins; (2) determine the spatial distribution of lobomycosis in the IRL; and (3) assess temporal patterns of occurrence. Photographs from 704 distinctly marked dolphins were reviewed for skin lesions compatible with lobomycosis. The presumptive diagnosis was validated by comparing the results of photographic analysis with physical examination and histologic examination of lesion biopsies in 102 dolphins captured and released during a health assessment and 3 stranded dolphins. Twelve of 16 confirmed cases were identified previously by photography, a sensitivity of 75%. Among 89 dolphins without disease, all 89 were considered negative, a specificity of 100%. The prevalence of lobomycosis estimated from photographic data was 6.8% (48/704). Spatial distribution was determined by dividing the IRL into six segments based on hydrodynamics and geographic features. The prevalence ranged from <1% in the Mosquito Lagoon to 16.9% in the south Indian River. The incidence of the disease did not increase during the study period, indicating that the disease is endemic, rather than emerging. In summary, photo-identification is a useful tool to monitor the course of individual and population health for this enigmatic disease.  相似文献   

11.
Whole-body vibration (WBV), which is widely used as a type of exercise, involves the use of vibratory stimuli and it is used for rehabilitation and sports performance programmes. This study aimed to investigate the effect of WBV treatment in a chronic pain model after 10 WBV sessions. An animal model (chronic pain) was applied in 60 male Wistar rats (±180 g, 12 weeks old) and the animals were treated with low intensity exercise (treadmill), WBV (vibrating platform), and a combined treatment involving both. The controls on the platform were set to a frequency of 42 Hz with 2 mm peak-to-peak displacement, g ≈ 7, in a spiral mode. Before and after the vibration exposure, sensitivity was determined. Aβ-fibers-mediated mechanical sensitivity thresholds (touch-pressure) were measured using a pressure meter. C-fibers-mediated thermal perception thresholds (hot pain) were measured with a hot plate. After each session, WBV influenced the discharge of skin touch-pressure receptors, reducing mechanical sensitivity in the WBV groups (P < 0.05). Comparing the conditions “before vs. after”, thermal perception thresholds (hot pain) started to decrease significantly after the third WBV session (P < 0.05). WBV decreases mechanical hyperalgesia after all sessions and thermal sensitivity after the third session with the use of WBV.  相似文献   

12.
The aim of this study was to investigate tactile sensitivity near the site of primary hyperalgesia evoked by capsaicin applied topically to the dorsolateral aspect of the hand. In the first experiment (N = 15), touch thresholds increased in the fifth finger ipsilateral to the topically applied capsaicin, but remained unchanged at greater distances from the site of capsaicin treatment. In a second experiment (N = 12), the effect of the capsaicin treatment on sensations evoked not only by light touch but also by warmth, heat-pain, and pressure-pain to a 2-mm diameter steel probe was investigated in the fifth finger. Again, tactile sensitivity was inhibited at the fifth finger, even though stimulation with a cotton bud evoked no discomfort; moreover, sensitivity to warmth and heat-pain were unimpaired. However, sensitivity to pressure-pain increased in the fifth finger after the capsaicin treatment, possibly due to activation of nociceptors sandwiched between the probe tip and bone that normally responded to sharp stimuli. These findings suggest that the central mechanisms that mediate secondary mechanical hyperalgesia suppress sensitivity to innocuous tactile sensations. This effect may contribute to tactile hypoesthesia in chronic pain conditions.  相似文献   

13.
The internal anatomy of the barbels of the common sawshark Pristiophorus cirratus was examined with light microscopy to clarify their sensory role. No sensory structures such as taste buds (chemoreception), ampullae of Lorenzini (electroreception) or free neuromasts (lateral line mechanoreception) could be located in the barbels. The presence of bundles of nerve fibres, however, indicates a tactile function for the barbels. Conveyance of information regarding potentially damaging stimuli (nociception) and temperature (thermoception) cannot be excluded at this stage. It is hypothesized that the barbels are used by P. cirratus to locate prey in both the water column and on the substratum via wake detection and sensing changes in surface texture. The barbels may also be involved in the detection of water currents for rheotaxis. Regression analyses on P. cirratus morphometric data showed that the width of the rostrum at two sections (the barbels and the rostrum tip) does not significantly correlate with total length. The regression analyses also suggested that the barbels of P. cirratus may be lateralised.  相似文献   

14.
《Journal of morphology》2017,278(2):203-214
Comparisons of skull shape between closely related species can provide information on the role that phylogeny and function play in cranial evolution. We used 3D‐anatomical landmarks in order to study the skull ontogeny of two closely related species, Lagenorhynchus obscurus and Lagenorhynchus australis , with a total sample of 52 skulls. We found shared trends between species, such as the relative compression of the neurocranium and the enlargement of the rostrum during ontogeny. However, these are common mammalian features, associated with prenatal brain development and sensory capsules. Moreover, we found a posterior displacement of the external nares and infraorbital foramina, and a strong development of the rostrum in an anteroposterior direction. Such trends are associated with the process of telescoping and have been observed in postnatal ontogeny of other odontocetes, suggesting a constraint in the pattern. Interspecific differences related to the deepness of facial region, robustness of the feeding apparatus and rostrum orientation may be related with the specific lifestyles of L. obscurus and L. australis . We also tested the presence of three different modules in the skull (basicranium, neurocranium, rostrum), all of which presented strong integration. Only the rostrum showed a different ontogenetic trajectory between species. Even though we detected directional asymmetry, changes in this feature along ontogeny were not detectable. Because asymmetry may be related to echolocation, our results suggest a functional importance of directional asymmetry from the beginning of postnatal life. J. Morphol. 278:203–214, 2017. © 2016 Wiley Periodicals,Inc.  相似文献   

15.
Monotremes, perhaps more than any other order of mammals, display an enormous behavioural reliance upon the tactile senses. In the platypus, Ornithorhynchus anatinus, this is manifest most strikingly in the special importance of the bill as a peripheral sensory organ, an importance confirmed by electrophysiological mapping that reveals a vast area of the cerebral cortex allocated to the processing of tactile inputs from the bill. Although behavioural evidence in the echidna, Tachyglossus aculeatus, suggests a similar prominence for tactile inputs from the snout, there is also a great reliance upon the distal limbs for digging and burrowing activity, pointing to the importance of tactile information from these regions for the echidna. In recent studies, we have investigated the peripheral tactile neural mechanisms in the forepaw of the echidna to establish the extent of correspondence or divergence that has emerged over the widely different evolutionary paths taken by monotreme and placental mammals. Electrophysiological recordings were made from single tactile sensory nerve fibres isolated in fine strands of the median or ulnar nerves of the forearm. Controlled tactile stimuli applied to the forepaw glabrous skin permitted an initial classification of tactile sensory fibres into two broad divisions, according to their responses to static skin displacement. One displayed slowly adapting (SA) response properties, while the other showed a selective sensitivity to the dynamic components of the skin displacement. These purely dynamically-sensitive tactile fibres could be subdivided according to vibrotactile sensitivity and receptive field characteristics into a rapidly adapting (RA) class, sensitive to low frequency (相似文献   

16.
Bats are the only mammals capable of true powered flight. The bat wing exhibits specializations, allowing these animals to perform complicated flight maneuvers like landing upside-down, and hovering. The wing membrane contains various tactile receptors, including hair-associated Merkel receptors that might be involved in stabilizing bat flight. Here, we studied the neuronal representation of the wing membrane in the primary somatosensory cortex (S1) of the anesthetized Big Brown Bat, Eptesicus fuscus, using tactile stimulation with calibrated monofilaments (von Frey hairs) while recording from multi-neuron clusters. We also measured cortical response thresholds to tactile stimulation of the wings.The body surface is mapped topographically across the surface of S1, with the head, foot, and wing being overrepresented. The orientation of the wing representation is rotated compared to the hand representaion of terrestrial mammals, confirming results from other bat species. Although different wing membrane parts derive embryologically from different body parts, including the flank (plagiopatagium), the tactile sensitivity of the entire flight membrane (0.2–1.2 mN) is remarkably close or even higher (dactylopatagium) than the average tactile sensitivity of the human fingertip.  相似文献   

17.
We examined the skulls of 72 bottlenose dolphins from the Indian and western Pacific Oceans to clarify the systematics in genusTursiops. We also examined type skulls ofTursiops aduncus (Ehrenberg, 1832),T. eurynome (Gray, 1846),T. catalania (Gray, 1862),Delphinus (Steno) gadamu Owen 1866,T. dawsoni Lydekker 1908, andT. truncatus (Montagu, 1821). The specimens were divided into two groups, A and B, based on rostrum length and characters of the basal part of the rostrum. The rostrum of group A was longer and tapered abruptly near the base, whereas that of group B was shorter and tapered more gradually throughout its length. Group A contained specimens from western, central, and eastern Asia, Africa, and Australasia. Group B contained specimens from central and eastern Asia and Australasia. The six type skulls were also clearly divided into two groups; the type skulls ofT. aduncus, T. catalania, andDelphinus (Steno) gadamu were included in group A, whereas the type skulls ofT. truncatus, T. eurynome, andT. dawsoni were included in group B. This grouping was consistent with the genetic status. Therefore, we identified group A specimens asT. aduncus and group B specimensT. truncatus, the oldest scientific names related to the two groups.  相似文献   

18.
The present study represents the first reported boat-based photographic identification study of Indo-Pacific bottlenose dolphins (Tursiops aduncus) off the Wild Coast of southeast South Africa. This area is known for the annual sardine run, which attracts apex predators to the region during the austral winter. Dedicated photo-identification surveys were conducted along this coast at three different study sites in February, June, and November of each year from 2014 to 2016. During 47 surveys, 136 bottlenose dolphin groups were encountered, an estimated 4,474 dolphins observed, and 2,149 individuals were identified. Although most individuals (N = 1,770, 82.4%) were only observed once, some were resighted 2–7 times (N = 379, 17.6%), with an average of 305 days (range: 88–705 days) between resightings. The majority of bottlenose dolphins were resighted within the same study site (N = 192), indicating some degree of residency. However, 65 individuals were observed at two different study sites, indicating individual movements along the coast. Our findings contrast earlier suggestions that bottlenose dolphins only use the Wild Coast during the sardine run, as we found large number of animals year-round with some level of site fidelity. This highlights the importance of the Wild Coast to bottlenose dolphins and provides further information on their status off southeastern South Africa.  相似文献   

19.
Several terrestrial animals and delphinids manipulate objects in a tactile manner, using parts of their bodies, such as their mouths or hands. In this paper, we report that bottlenose dolphins (Tursiops truncatus) manipulate objects not by direct bodily contact, but by spontaneous water flow. Three of four dolphins at Suma Aqualife Park performed object manipulation with food. The typical sequence of object manipulation consisted of a three step procedure. First, the dolphins released the object from the sides of their mouths while assuming a head-down posture near the floor. They then manipulated the object around their mouths and caught it. Finally, they ceased to engage in their head-down posture and started to swim. When the dolphins moved the object, they used the water current in the pool or moved their head. These results showed that dolphins manipulate objects using movements that do not directly involve contact between a body part and the object. In the event the dolphins dropped the object on the floor, they lifted it by making water flow in one of three methods: opening and closing their mouths repeatedly, moving their heads lengthwise, or making circular head motions. This result suggests that bottlenose dolphins spontaneously change their environment to manipulate objects. The reason why aquatic animals like dolphins do object manipulation by changing their environment but terrestrial animals do not may be that the viscosity of the aquatic environment is much higher than it is in terrestrial environments. This is the first report thus far of any non-human mammal engaging in object manipulation using several methods to change their environment.  相似文献   

20.
Measuring inflammation-induced changes in thresholds of hind paw withdrawal from mechanical pressure is a useful technique to assess changes in pain perception in rodents. Withdrawal thresholds can be measured first at baseline and then following drug, venom, injury, allergen, or otherwise evoked inflammation by applying an accurate force on very specific areas of the skin. An electronic von Frey apparatus allows precise assessment of mouse hind paw withdrawal thresholds that are not limited by the available filament sizes in contrast to classical von Frey measurements. The ease and rapidity of measurements allow for incorporation of assessment of tactile sensitivity outcomes in diverse models of rapid-onset inflammatory and neuropathic pain as multiple measurements can be taken within a short time period. Experimental measurements for individual rodent subjects can be internally controlled against individual baseline responses and exclusion criteria easily established to standardize baseline responses within and across experimental groups. Thus, measurements using an electronic von Frey apparatus represent a useful modification of the well-established classical von Frey filament-based assays for rodent mechanical allodynia that may also be applied to other nonhuman mammalian models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号