首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
It is becoming increasingly apparent that many pathogen populations, including those of insects, show high levels of genotypic variation. Baculoviruses are known to be highly variable, with isolates collected from the same species in different geographical locations frequently showing genetic variation and differences in their biology. More recent studies at smaller scales have also shown that virus DNA profiles from individual larvae can show polymorphisms within and between populations of the same species. Here, we investigate the genotypic and phenotypic variation of an insect baculovirus infection within a single insect host. Twenty four genotypically distinct nucleopolyhedrovirus (NPV) variants were isolated from an individual pine beauty moth, Panolis flammea, caterpillar by in vivo cloning techniques. No variant appeared to be dominant in the population. The PaflNPV variants have been mapped using three restriction endonucleases and shown to contain three hypervariable regions containing insertions of 70-750 bp. Comparison of seven of these variants in an alternative host, Mamestra brassicae, demonstrated that the variants differed significantly in both pathogenicity and speed of kill. The generation and maintenance of pathogen heterogeneity are discussed.  相似文献   

2.
Reduced genetic variation among hosts may favour the emergence of virulent infectious diseases by enhancing pathogen replication and its associated virulence due to adaptation to a limited set of host genotypes. Here, we test this hypothesis using experimental evolution of a mouse-specific retroviral pathogen, Friend virus (FV) complex. We demonstrate rapid fitness (i.e. viral titre) and virulence increases when FV complex serially infects a series of inbred mice representing the same genotype, but not when infecting a diverse array of inbred mouse strains modelling the diversity in natural host populations. Additionally, a single infection of a different host genotype was sufficient to constrain the emergence of a high fitness/high virulence FV complex phenotype in these experiments. The potent inhibition of viral fitness and virulence was associated with an observed loss of the defective retroviral genome (spleen focus-forming virus), whose presence exacerbates infection and drives disease in susceptible mice. Results from our experiments provide an important first step in understanding how genetic variation among vertebrate hosts influences pathogen evolution and suggests that serial exposure to different genotypes within a single host species may act as a constraint on pathogen adaptation that prohibits the emergence of more virulent infections. From a practical perspective, these results have implications for low-diversity host populations such as endangered species and domestic animals.  相似文献   

3.
In the United Kingdom, Panolis flammea (Den. and Schiff.) (Lepidoptera: Noctuidae) is an important pest species of the introduced lodgepole pine but not of its natural host Scots pine. The timing of P. flammea larval growth must be synchronized with its host tree if the larvae are to succeed. We collected field data during 1990 which revealed that the phenological window starts earlier in Scots pine and is shorter than that observed in lodgepole pine. The larvae are found in the field earlier and within a narrower time frame within a Scots pine forest than in a lodgepole pine forest. The larval developmental period is significantly longer on lodgepole pine than on Scots pine. The synchrony/asynchrony of P. flammea to its natural host (Scots pine) and an introduced tree (lodgepole pine) results in the parasitoids having a different impact on the larvae of the two hosts. At any one time, the host plant, caterpillars and parasitoids are more synchronous on the ancestral Scots pine than on lodgepole pine, resulting in a higher percentage of larvae in the optimal instar for parasitism at that time. In lodgepole pine, the percentage of suitable instars available to parasitoids is lower at any given time. The information presented here furthers our understanding of the possible mechanisms for the observed differential population dynamics of the insect on Scots pine and lodgepole pine in the UK. Handling editor: Robert Glinwood.  相似文献   

4.
The genetic diversity of many DNA virus populations in nature is unknown, but for those that have been studied it has been found to be relatively high. This is particularly true for baculoviruses, a family of large double-stranded DNA viruses that infect the larval stages of insects. Why there should be such heterogeneity within these virus populations is puzzling and what sustains it is still unknown. It has long been recognized that some baculoviruses have a relatively wide host range, but the effect of different host species on the genotypic structure of a baculovirus population has received little attention. We provide evidence that infection of different insect species can influence the genetic diversity of a Panolis flammea nucleopolyhedrovirus (PaflNPV) population, isolated from the pine beauty moth. Variable regions of the PaflNPV genome were sequenced and novel ORFs were identified on each of the enlarged fragments. The roles of these orfs and the implications of their presence or absence within different genotypes are discussed. The variable fragments were also labelled with 32P and used as polymorphic genetic markers of genotype abundance. The proportion of polymorphic loci changed after passage in different insect species and this varied among species, suggesting a role for host selection of pathogen genotypes in the field as a mechanism for maintaining genetic diversity. These results have wide-ranging implications for understanding the ecology of insect-virus interactions in the natural environment and the evolution of baculovirus life history strategies.  相似文献   

5.
Food webs typically quantify interactions between species, whereas evolution operates through the success of alleles within populations of a single species. To bridge this gap, we quantify genotypic interaction networks among individuals of a single specialized parasitoid species and its obligate to cyclically parthenogenetic aphid host along a climatic gradient. As a case study for the kinds of questions genotype food webs could be used to answer, we show that genetically similar parasitoids became more likely to attack genetically similar hosts in warmer sites (i.e. there was network‐wide congruence between the within‐species shared allelic distance of the parasitoid and that of its host). Narrowing of host‐genotype‐niche breadth by parasitoids could reduce resilience of the network to changes in host genetic structure or invasion by novel host genotypes and inhibit biological control. Thus, our approach can be easily used to detect changes to sub‐species‐level food webs, which may have important ecological and evolutionary implications, such as promoting host‐race specialization or the accelerated loss of functional diversity following extinctions of closely related genotypes.  相似文献   

6.
The genetic and ecological factors that shape the evolution of animal diets remain poorly understood. For herbivorous insects, the expectation has been that trade‐offs exist, such that adaptation to one host plant reduces performance on other potential hosts. We investigated the genetic architecture of alternative host use by rearing individual Lycaeides melissa butterflies from two wild populations in a crossed design on two hosts (one native and one introduced) and analysing the genetic basis of differences in performance using genomic approaches. Survival during the experiment was highest when butterfly larvae were reared on their natal host plant, consistent with local adaptation. However, cross‐host correlations in performance among families (within populations) were not different from zero. We found that L. melissa populations possess genetic variation for larval performance and variation in performance had a polygenic basis. We documented very few genetic variants with trade‐offs that would inherently constrain diet breadth by preventing the optimization of performance across hosts. Instead, most genetic variants that affected performance on one host had little to no effect on the other host. In total, these results suggest that genetic trade‐offs are not the primary cause of dietary specialization in L. melissa butterflies.  相似文献   

7.
The effect of a nuclear polyhedrosis virus on the relationship between Trichoplusia ni and the parasite, Hyposoter exiguae, was investigated to determine if the virus could invade and multiply in the tissues of the parasites, if parasites which emerged from virus-infected T. ni larvae had normal emergence, fecundity, and longevity, and if the parasite could serve as a vector for the virus. Light microscopy revealed particles which appeared to be polyhedra within the lumen of the midgut of parasite larvae from virus-infected hosts. Transmission electron microscopy confirmed the presence of polyhedra and free virions within the midgut of the larvae. Polyhedra or free virions were never found within any parasite tissues. Parasite larvae within hosts exposed to virus before parasitization perished when their hosts died of virus infection. Parasite larvae in hosts exposed to virus after parasitization completed their development before their hosts died of virus infection. The proportion of parasites which survived increased as the time between host parasitization and host virus exposure increased. Parasite larvae which developed in hosts exposed to the virus soon after parasitization spent significantly less time in their hosts than did parasites which developed in noninfected hosts. There was no significant difference in time spent in the pupal stage, percent adult emergence, adult longevity with and without food and water, and fecundity of parasites which developed in virus-infected hosts and those which developed in noninfected hosts. Female parasites laid as many eggs in virus-infected hosts as they did in noninfected hosts. Sixty percent of the female parasites which oviposited in virus-infected hosts vectored infective doses of virus to an average of 6% of the healthy hosts subsequently exposed to them. None of the healthy host larvae exposed to male parasites which had been exposed to virus-infected host larvae became infected with the virus. Forty percent of the female parasites which developed in virus-infected hosts transmitted infective doses of the virus to an average of 65% of the healthy host larvae exposed to them. Ninety percent of the male parasites which developed in virus-infected hosts transferred infective doses of the virus to an average of 21% of the healthy host larvae exposed to them.  相似文献   

8.
The virulence levels attained by serial passage of pathogens through similar host genotypes are much higher than observed in natural systems; however, it is unknown what keeps natural virulence levels below these empirically demonstrated maximum levels. One hypothesis suggests that host diversity impedes pathogen virulence, because adaptation to one host genotype carries trade‐offs in the ability to replicate and cause disease in other host genotypes. To test this hypothesis, with the simplest level of population diversity within the loci of the major histocompatibility complex (MHC), we serially passaged Friend virus complex (FVC) through two rounds, in hosts with either the same MHC genotypes (pure passage) or hosts with different MHC genotypes (alternated passage). Alternated passages showed a significant overall reduction in viral titre (31%) and virulence (54%) when compared to pure passages. Furthermore, a resistant host genotype initially dominated any effects due to MHC diversity; however, when FVC was allowed to adapt to the resistant host genotype, predicted MHC effects emerged; that is, alternated lines show reduced virulence. These data indicate serial exposure to diverse MHC genotypes is an impediment to pathogen adaptation, suggesting genetic variation at MHC loci is important for limiting virulence in a rapidly evolving pathogen and supports negative frequency‐dependent selection as a force maintaining MHC diversity in host populations.  相似文献   

9.
Nucleopolyhedroviruses ( Baculoviridae ) are virulent insect pathogens that generally show a high degree of host specificity and have recognized potential as biological insecticides. Whenever viruses are applied for pest control, a proportion of the infected insects will also be parasitized by hymenopteran or dipteran parasitoids and interspecific competition for host resources will occur; the severity of such competition is likely to be modulated to a large degree by the virulence of each type of parasite. We examined the impact of parasitism by the solitary egg-larval endoparasitoid Chelonus insularis (Hymenoptera: Braconidae) on the speed of kill of nucleopolyhedrovirus-infected Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae and the pattern of host growth and virus production in infected and/or parasitized hosts. We also examined the effect of parasitism on the virulence, infectivity and genetic composition of serially passaged virus. Both parasitism and viral infection resulted in a marked reduction in host growth. When third instar larvae were dually parasitized and virus-infected, the growth rate was even more severely affected compared to parasitized larvae. There was a significant increase in virus production in larvae infected at later instars. Interspecific competition resulted in a substantial decrease in pathogen production in parasitized larvae infected at the fourth instar, but not in parasitized larvae infected at earlier instars. The serial passage experiment resulted in the appearance of four distinct genetic isolates of the virus detected by restriction endonuclease analysis. Of the three isolates that appeared in nonparasitized larvae, two showed increased virulence, expressed by mean time to death, and for one of these the infectivity, expressed as LC 50 , was reduced. One isolate that appeared in parasitized larvae (isolate D) had increased virulence and infectivity. Southern blot analysis indicated that virus isolate D was most likely generated by point mutation of a restriction site or by alterations such as duplications, deletions or by recombination of two or more genotypic variants present in the wild-type nucleopolyhedrovirus isolate. Our study provides clear evidence of interspecific competition within the host, since, depending on the timing of inoculation, adverse effects were observed upon both the parasitoid and the virus.  相似文献   

10.
For insects, the prevalence of numerous vertically transmitted viruses can be high in their host populations. These viruses often have few, if any, pathological effects on their hosts, and consequently, many of them can remain unnoticed for long periods, despite their potential role in the evolution of the host phenotype. Some females of Leptopilina boulardi, a solitary parasitoid of Drosophila larvae, are infected by an inherited virus (LbFV) that manipulates the behavior of the wasp by increasing its tendency to lay eggs in a host that is already parasitized (superparasitism). This behavioral alteration allows horizontal transmission of the virus within superparasitized Drosophila larvae. Using suppressive subtractive hybridization with infected and uninfected lines, we identified one putative viral sequence. Based on this sequence, we developed a simple PCR test. We tested the correlation between the superparasitism phenotype and PCR amplification of the putative viral marker using several experimental conditions (including horizontal transfers) and several parasitoid genotypes. All of the results revealed that there was a perfect match between the superparasitism phenotype and the amplification profile, which validated use of the molecular marker as a tool to track the presence of the virus and provided the first genomic data for this fascinating virus. The results also show that there was very efficient horizontal and vertical transmission of LbFV, which probably explains its high prevalence in the French populations that we sampled (67 and 70% of infected females). This manipulative virus is likely to play a major role in the ecology and evolution of its parasitoid host.  相似文献   

11.
Theoretical studies have indicated that the population genetics of host-parasite interactions may be highly dynamic. with parasites perpetually adapting to common host genotypes and hosts evolving resistance to common parasite genotypes. The present study examined temporal variation in resistance of hosts and infectivity of parasites within three populations of Daphnia magna infected with the sterilizing bacterium Pasteuria ramosa. Parasite isolates and host clones were collected in each of two years (1997, 1998) from one population; in two other populations, hosts were collected from both years, but parasites from only the first year. We then performed infection experiments (separately for each population) that exposed hosts to parasites from the same year or made combinations involving hosts and parasites from different years. In two populations, patterns were consistent with the evolution of host resistance: either infectivity or the speed with which parasites sterilized hosts declined from 1997 to 1998. In another population, infectivity, virulence, and parasite spore production did not vary among host-year or parasite-year. For this population, we also detected strong within-population genetic variation for resistance. Thus, in this case, genetic variability for fitness-related traits apparently did not translate into evolutionary change. We discuss a number of reasons why genetic change may not occur as expected in parasite-host systems, including negative correlations between resistance and other traits, gene flow, or that the dynamic process itself may obscure the detection of gene frequency changes.  相似文献   

12.
Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses.  相似文献   

13.
Parasitoids exploit host insects for food and other resources; they alter host development and physiology to optimize conditions to favor parasitoid development. Parasitoids influence their hosts by injecting eggs, along with a variety of substances, including venoms, polydnaviruses, ovarian fluids, and other maternal factors, into hosts. These factors induce profound changes in hosts, such as behavior, metabolism, endocrine events, and immune defense. Because endoparasitoids develop and consume tissues from within their hosts, it is reasonable to suggest that internal parasitization would also influence host food consumption and metabolism. We report on the effects of parasitism by Cotesia flavipes on the food consumption and utilization of its host, Diatraea saccharalis. Cotesia flavipes reduces the host food consumption, but parasitized larvae considered a unit with their parasitoid's attained the same final weight as the nonparasitized larvae. Nutritional indices, midgut activities of carbohydrases, and trypsin of parasitized and nonparasitized D. saccharalis were assessed. Parasitized larvae had reduced relative food consumption, metabolic and growth rates, coupled with higher efficiency for conversion of the digested, but not ingested, food into body mass. Parasitism also affected food flux through the gut and protein contents in the midgut of parasitized larvae. The activity of α‐amylase and trehalase in parasitized host was enhanced in the first day after parasitism relative to control larvae. Saccharase activity remained unchanged during larval development. Trypsin activity was reduced from the fifth to ninth day after parasitism. We argue on the mechanisms involved in host food processing after parasitism.  相似文献   

14.
Ecosystem processes, such as plant litter decomposition, are known to be partly genetically determined, but the magnitude of genetic variation within local populations is still poorly known. We used micropropagated field-grown saplings of 19 Betula pendula genotypes, representing genetic variation in a natural birch population, to examine (1) whether genotype can explain variation in leaf litter decomposition within a local plant population, and (2) whether genotypic variation in litter decomposition is associated with genotypic variation in other plant attributes. We found that a local B. pendula population can have substantial genotypic variation in leaf litter mass loss at the early stages of the decomposition process and that this variation can be associated with genotypic variation in herbivore resistance and leaf concentrations of soluble proteins and total nitrogen (N). Our results are among the first to show that fundamental ecosystem processes can be significantly affected by truly intraspecific genetic variation of a plant species.  相似文献   

15.
Specialist herbivores are suggested to be unaffected by or attracted to the defense compounds of their host-plants, and can even prefer higher levels of certain chemicals. Abrostola asclepiadis is a specialist herbivore whose larvae feed on the leaves of Vincetoxicum hirundinaria, which contains toxic alkaloids and is unpalatable to most generalist herbivores. The food choice, leaf consumption and growth of A. asclepiadis larvae were studied to determine whether there is variation among and within host-plant populations in their suitability for this specialist herbivore. There was significant variation in food preference and leaf consumption among host-plant populations, but no differences were found in larval growth and feeding on different host-plant populations. A. asclepiadis larvae preferred host-plant populations with higher alkaloid concentrations, but did not consume more leaf material from plants originating from such populations in a no-choice experiment. There was also some variation in food preference of larvae among host-plant individuals belonging to the same population, suggesting that there was variability in leaf chemistry also within populations. Such variation in larval preference among host-plant genotypes and populations may create potential for coevolutionary dynamics in a spatial mosaic.  相似文献   

16.
Characterizing genetic variation in parasite transmission traits and its contribution to parasite vigor is essential for understanding the evolution of parasite life‐history traits. We measured genetic variation in output, activity, survival, and infection success of clonal transmission stages (cercaria larvae) of a complex life cycle parasite (Diplostomum pseudospathaceum). We further tested if variation in host nutritional stage had an effect on these traits by keeping hosts on limited or ad libitum diet. The traits we measured were highly variable among parasite genotypes indicating significant genetic variation in these life‐history traits. Traits were also phenotypically variable, for example, there was significant variation in the measured traits over time within each genotype. However, host nutritional stage had no effect on the parasite traits suggesting that a short‐term reduction in host resources was not limiting the cercarial output or performance. Overall, these results suggest significant interclonal and phenotypic variation in parasite transmission traits that are not affected by host nutritional status.  相似文献   

17.
1.  An increasing body of evidence suggests that within-species diversity plays an important role for community and ecosystem functioning, alters complex trophic interactions and affects patterns of species diversity and coexistence. Nonetheless, we lack a good understanding of how genotypic trait variation translates into shifts in the relative abundance of genotypes within populations.
2.  In this study, we show that genotypic selection strongly alters dominance relationships among genotypes over a period of 5 years. This resulted in remarkably consistent changes in the proportional representation of genotypes, and in a concomitant decline of diversity and evenness in our experimental populations.
3.  High growth rates and the production of large offspring were positively associated with genotypic performance. Vegetative abundances of genotypes translated monotonically into flowering frequencies.
4.   Synthesis . We conclude that genotypic selection markedly affects patterns of diversity and consistently alters genotypic abundance and mean trait distributions in plant populations over a relatively short period of time.  相似文献   

18.
Parasite–host relationships create strong selection pressures that can lead to adaptation and increasing specialization of parasites to their hosts. Even in relatively loose host–parasite relationships, such as between generalist ectoparasites and their hosts, we may observe some degree of specialization of parasite populations to one of the multiple potential hosts. Salivary proteins are used by blood‐feeding ectoparasites to prevent hemostasis in the host and maximize energy intake. We investigated the influence of association with specific host species on allele frequencies of salivary protein genes in Cimex adjunctus, a generalist blood‐feeding ectoparasite of bats in North America. We analysed two salivary protein genes: an apyrase, which hydrolyses ATP at the feeding site and thus inhibits platelet aggregation, and a nitrophorin, which brings nitrous oxide to the feeding site, inhibiting platelet aggregation and vasoconstriction. We observed more variation at both salivary protein genes among parasite populations associated with different host species than among populations from different spatial locations associated with the same host species. The variation in salivary protein genes among populations on different host species was also greater than expected under a neutral scenario of genetic drift and gene flow. Finally, host species was an important predictor of allelic divergence in genotypes of individual C. adjunctus at both salivary protein genes. Our results suggest differing selection pressures on these two salivary protein genes in C. adjunctus depending on the host species.  相似文献   

19.
In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.  相似文献   

20.
Herbivore adaptation to plant genetic variation can lead to reproductive isolation and the formation of host-associated lineages (host-associated differentiation, or HAD). Plant genetic variation exists along a scale, ranging from variation among individual plant genotypes to variation among plant species. Along this scale, herbivores may adapt and diverge at any level, yet few studies have examined whether herbivore differentiation exhibits scaling with respect to host variation (e.g., from genotypes to species). Determining at which level(s) herbivore differentiation occurs can provide insight into the importance of plant genetic variation on herbivore evolution. Previous studies have found strong genetic differentiation in the eriophyid mite, Aceria parapopuli, between hybrid Populus hosts and parental Populus species, but minimal neutral-locus differentiation among individual trees of the same species. We tested whether genetic differentiation in A. parapopuli scales with genetic variation in its Populus hosts. Using mite ITS1 sequence data collected among host species and among host populations, two key patterns emerged. (1) We found strong differentiation of A. parapopuli among Populus species, supporting the hypothesis that plant species differences drive reproductive isolation and HAD. (2) We did not find evidence of host-driven genetic differentiation in mites at the level of plant populations, suggesting that this level of plant variation is insufficiently strong to drive differentiation at a neutral locus. In combination with previous studies, we found that HAD occurs at the higher levels of plant genetic variation, but not at lower levels, and conclude that HAD depends on the scale of plant genetic variation examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号