首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4+CD8+ thymocytes are either positively selected and subsequently mature to CD4 single positive (SP) or CD8 SP T cells, or they die by apoptosis due to neglect or negative selection. This clonal selection is essential for establishing a functional self-restricted T cell repertoire. Intracellular signals through the three known mitogen-activated protein (MAP) kinase pathways have been shown to selectively guide positive or negative selection. Whereas the c-Jun N-terminal kinase and p38 MAP kinase regulate negative selection of thymocytes, the extracellular signal-regulated kinase (ERK) pathway is required for positive selection and T cell lineage commitment. In this paper, we show that the MAP/ERK kinase (MEK)-ERK pathway is also involved in negative selection. Thymocytes from newborn TCR transgenic mice were cultured with TCR/CD3epsilon-specific Abs or TCR-specific agonist peptides to induce negative selection. In the presence of the MEK-specific pharmacological inhibitors PD98059 or UO126, cell recovery was enhanced and deletion of DP thymocytes was drastically reduced. Furthermore, development of CD4 SP T cells was blocked, but differentiation of mature CD8 SP T cells proceeded in the presence of agonist peptides when MEK activity was blocked. Thus, our data indicate that the outcome between positively and negatively selecting signals is critically dependent on MEK activity.  相似文献   

2.
This study examined the involvement of c-fos protooncogene in thymocyte development from lymphohemopoietic T cell progenitors, within the thymic microenvironment. We first analyzed the thymocytes developing in vitro in the fetal thymus from the c-fos transgenic mice and found a high proportion of CD4+ single positive (SP) cells. We then seeded either fetal liver or bone marrow (BM) cells from normal donors onto lymphocyte-depleted fetal thymus explants of c-fos transgenic mice. The results showed an increased proportion of mature CD4+ SP and decreased CD4+CD8+ double positive (DP) cells. A similar pattern of CD4/CD8 thymocyte subsets was observed when either thymus or BM cells from c-fos transgenic mice developed within a normal thymic stroma. The kinetics of thymocyte development in organ culture (from Days 3 to 11) suggested that the SP cells obtained under these conditions may have bypassed the CD4+CD8+ DP phase. It appears that the altered pattern of thymocyte development manifested in adult c-fos transgenic mice can be induced by the early embryonic thymic stroma, and may also involve cells in the lymphohemopoietic tissues.  相似文献   

3.
4.
Maturation to the CD4+8+ double-positive (DP) stage of thymocyte development is restricted to cells that have passed TCRbeta selection, an important checkpoint at which immature CD4-8- double-negative (DN) cells that express TCRbeta polypeptide chains are selected for further maturation. The generation of DP thymocytes following TCRbeta selection is dependent on cellular survival, differentiation, and proliferation, and the entire process appears to be mediated by the pre-TCR/CD3 complex. In this study, we investigate the signaling requirements for TCRbeta selection using mice single deficient and double deficient for CD3zeta/eta and/or p56lck. While the numbers of DP cells are strongly reduced in the single-deficient mice, a further drastic reduction in the generation of DP thymocytes is seen in the double-deficient mice. The poor generation of DP cells in the mutant mice is primarily due to an impaired ability of CD25+ DN thymocytes to proliferate following expression of a TCRbeta-chain. Nevertheless, the residual DP cells in all mutant mice are strictly selected for expression of TCRbeta polypeptide chains. DN thymocytes of mutant mice expressed TCRbeta and CD3epsilon at the cell surface and contained mRNA for pre-Talpha, but not for clonotypic TCRalpha-chains, together suggesting that TCRbeta selection is mediated by pre-TCR signaling in all cases. The data suggest differential requirements of pre-TCR signaling for cell survival on the one hand, and for the proliferative burst associated with TCRbeta selection on the other.  相似文献   

5.
The present study has examined the role of the serine/threonine kinase LKB1 in the survival and differentiation of CD4/8 double positive thymocytes. LKB1-null DPs can respond to signals from the mature α/β T-cell-antigen receptor and initiate positive selection. However, in the absence of LKB1, thymocytes fail to mature to conventional single positive cells causing severe lymphopenia in the peripheral lymphoid tissues. LKB1 thus appears to be dispensable for positive selection but important for the maturation of positively selected thymocytes. LKB1 also strikingly prevented the development of invariant Vα14 NKT cells and innate TCR αβ gut lymphocytes. Previous studies with gain of function mutants have suggested that the role of LKB1 in T cell development is mediated by its substrate the AMP-activated protein kinase (AMPK). The present study now analyses the impact of AMPK deletion in DP thymocytes and shows that the role of LKB1 during the development of both conventional and innate T cells is mediated by AMPK-independent pathways.  相似文献   

6.
We have investigated the role of the mitogen-activated protein kinase (MAPK) pathway in the differentiation of CD4+ and CD8+ T cells by looking specifically at the effects of inhibitors of MAPK-activating enzyme, MAPK/extracellular signal-related kinase (ERK) kinase (MEK), during the positive selection step from double-positive to single-positive (SP) thymocytes. Using a variety of transgenic/knockout mouse strain combinations that fail to differentiate individual lineages of SP thymocytes together with genetically engineered F(ab')2 reagents that induce maturation preferentially to either the CD4 or CD8 subpopulations, we show that induction of CD4 differentiation cells is highly sensitive to levels of MEK inhibition that have no effect on CD8 maturation. In addition, the presence of MEK inhibitor is able to modify signals that normally induce CD4 differentiation to instead promote CD8 differentiation. Finally, we show that continuous culture in the presence of inhibitor interferes with TCR up-regulation in SP thymocytes, suggesting that MAPK signaling may be involved in final maturation steps for both lineages. These data indicate that there is discrimination in the biochemical pathways that are necessary to specify CD4 and CD8 lineage commitment and can reconcile previously conflicting reports on the influence of MAPK activation in commitment and maturation of thymocytes.  相似文献   

7.
TCR signals drive thymocyte development, but it remains controversial what impact, if any, the intensity of those signals have on T cell differentiation in the thymus. In this study, we assess the impact of CD8 coreceptor signal strength on positive selection and CD4/CD8 lineage choice using novel gene knockin mice in which the endogenous CD8alpha gene has been re-engineered to encode the stronger signaling cytoplasmic tail of CD4, with the re-engineered CD8alpha gene referred to as CD8.4. We found that stronger signaling CD8.4 coreceptors specifically improved the efficiency of CD8-dependent positive selection and quantitatively increased the number of MHC class I (MHC-I)-specific thymocytes signaled to differentiate into CD8+ T cells, even for thymocytes expressing a single, transgenic TCR. Importantly, however, stronger signaling CD8.4 coreceptors did not alter the CD8 lineage choice of any MHC-I-specific thymocytes, even MHC-I-specific thymocytes expressing the high-affinity F5 transgenic TCR. This study documents in a physiologic in vivo model that coreceptor signal strength alters TCR-signaling thresholds for positive selection and so is a major determinant of the CD4:CD8 ratio, but it does not influence CD4/CD8 lineage choice.  相似文献   

8.
9.
The Tec family tyrosine kinase Itk is critical for efficient signaling downstream of the TCR. Biochemically, Itk is directly phosphorylated and activated by Lck. Subsequently, Itk activates phospholipase C-gamma1, leading to calcium mobilization and extracellular signal-regulated kinase/mitogen-activated protein kinase activation. These observations suggested that Itk might play an important role in positive selection and CD4/CD8 lineage commitment during T cell development in the thymus. To test this, we crossed Itk-deficient mice to three lines of TCR transgenics and analyzed progeny on three different MHC backgrounds. Analysis of these mice revealed that fewer TCR transgenic T cells develop in the absence of Itk. In addition, examination of multiple T cell development markers indicates that multiple stages of positive selection are affected by the absence of Itk, but the T cells that do develop appear normal. In contrast to the defects in positive selection, CD4/CD8 lineage commitment seems to be intact in all the TCR transgenic itk(-/-) lines tested. Overall, these data indicate that altering TCR signals by the removal of Itk does not affect the appropriate differentiation of thymocytes based on their MHC specificity, but does impact the efficiency with which thymocytes complete their maturation process.  相似文献   

10.
Apoptosis eliminates inappropriate or autoreactive T lymphocytes during thymic development. Intracellular mediators involved in T-cell receptor (TCR)-mediated apoptosis in developing thymocytes during negative selection are therefore of great interest. Caspases, cysteine proteases that mediate mature T-cell apoptosis, have been implicated in thymocyte cell death, but their regulation is not understood. We examined caspase activities in distinct thymocyte subpopulations that represent different stages of T-cell development. We found caspase activity in CD4+CD8+ double positive (DP) thymocytes, where selection involving apoptosis occurs. Earlier and later thymocyte stages exhibited no caspase activity. Only certain caspases, such as caspase-3 and caspase-8-like proteases, but not caspase-1, are active in DP thymocytes in vivo and can be activated when DP thymocytes are induced to undergo apoptosis in vitro by TCR-crosslinking. Thus, specific caspases appear to be developmentally regulated in thymocytes.  相似文献   

11.
Immature double-positive (DP) thymocytes mature into CD4(+)CD8(-) cells in response to coengagement of TCR with any of a variety of cell surface "coinducer" receptors, including CD2. In contrast, DP thymocytes are signaled to undergo apoptosis by coengagement of TCR with CD28 costimulatory receptors, but the molecular basis for DP thymocyte apoptosis by TCR plus CD28 coengagement is not known. In the present study, we report that TCR plus CD28 coengagement does not invariably induce DP thymocyte apoptosis but, depending on the intensity of CD28 costimulation, can induce DP thymocyte maturation. We demonstrate that distinct but interacting signal transduction pathways mediate DP thymocyte maturation signals and DP thymocyte apoptotic signals. Specifically, DP maturation signals are transduced by the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and up-regulate expression of the antiapoptotic protein Bcl-2. In contrast, the apoptotic response stimulated by CD28 costimulatory signals is mediated by ERK/MAPK-independent pathways. Importantly, when TCR-activated thymocytes are simultaneously coengaged by both CD28 and CD2 receptors, CD28 signals can inhibit ERK/MAPK-dependent Bcl-2 protein up-regulation. Thus, there is cross-talk between the signal transduction pathways that transduce apoptotic and maturation responses, enabling CD28-initiated signal transduction pathways to both stimulate DP thymocyte apoptosis and also negatively regulate maturation responses initiated by TCR plus CD2 coengagement.  相似文献   

12.
Intrathymic positive selection matches CD4-CD8 lineage differentiation to MHC specificity. However, it is unclear whether MHC signals induce lineage choice or simply select thymocytes of the appropriate lineage. To investigate this issue, we assessed thymocytes undergoing positive selection for expression of the CD8 lineage markers perforin and Runx3. Using both population-based and single-cell RT-PCR analyses, we found large subsets of MHC class II (MHC-II)-signaled thymocytes expressing these genes within the CD4+ 8+ and CD4+ 8(int), but not the CD4+ 8- populations of signaling competent mice. This indicates that MHC-II signals normally fail to impose CD4 differentiation and further implies that the number of mature CD8 single-positive (SP) thymocytes greatly underestimates CD8 lineage choice. We next examined whether MHC-II-restricted CD4+ 8- thymocytes remain competent to initiate CD8 lineage gene expression. In mice in which expression of the tyrosine kinase Zap70 and thereby TCR signaling were impaired selectively in SP thymocytes, MHC-II-signaled CD4+ 8- thymocytes expressed perforin and Runx3 and failed to up-regulate the CD4 marker Thpok. This indicated that impairing TCR signals at the CD4 SP stage switched gene expression patterns from CD4- to CD8-lineage specific. We conclude from these findings that MHC-II-signaled thymocytes remain competent to initiate CD8-specific gene expression even after CD8 down-regulation and that CD4 lineage differentiation is not fixed before the CD4 SP stage.  相似文献   

13.
14.
Although the thymic microenvironment provides the necessary elements for T-cell differentiation, the precise role of individual components remains to be determined. In this paper, attempts were made to address the possibility that CD4 or CD8 single-positive (SP) thymocytes could be developed from immature CD4+CD8+ (double-positive; DP) thymocytes in a suspension culture in the presence of soluble factors. We observed that IL-4 and IFN-gamma weakly induced DP cells to differentiate to CD4 cells, but not to CD8. In contrast, IL-2 weakly induced differentiation to CD8. Interestingly, Con A sup strongly induced differentiation to CD8 SP from the purified DP thymocytes prepared from C57BL/6 or LCMV TCRtg mice. In particular, it was found that thymocyte culture with Con A sup generated CD69+DP cells, and the CD69+DP differentiated to CD8 SP under the suspension culture with soluble factors. Thus, Con A sup or combinations of IL-2, IL-4 and IL-7 strongly induced differentiation of CD69+DP to CD8 SP, whereas individual cytokines did not. These results suggest that soluble factors like cytokines play an important role in the generation of SP thymocytes in the absence of thymic stromal cells, at least from a distinctive subpopulation like CD69+DP thymocytes, and perhaps from those of broader range when in conjunction with TCR/MHC interaction.  相似文献   

15.
In order to examine the influence of chronic alpha1-adrenergic receptor (alpha1-AR) blockade on the thymus structure and T-cell maturation, peripubertal and adult male rats were treated with urapidil (0.20 mg/kg BW/d; s.c.) over 15 consecutive days. Thymic structure and phenotypic characteristics of the thymocytes were assessed by stereological and flow cytometry analysis, respectively. In immature rats, treatment with urapidil reduced the body weight gain and, affecting the volume of cortical compartment and its cellularity decreased the organ size and the total number of thymocytes compared to age-matched saline-injected controls. The percentage of CD4+8- single positive (SP) thymocytes was decreased, while that of CD4-8+ was increased suggesting, most likely, a disregulation in final steps of the positively selected cells maturation. However, alpha1-AR blockade in adult rats increased the thymus weight as a consequence of increase in the cortical size and cellularity. The increased percentage of most immature CD4-8- double negative (DN) cells associated with decreased percentage of immature CD4+8+ double positive (DP) thymocytes suggests a decelerated transition from DN to DP stage of T-cell development. As in immature rats, the treatment in adult rats evoked changes in the relative numbers of SP cells, but contrary to immature animals, favoring the maturation of CD4+8- over CD4-8+ thymocytes. These results demonstrate that: i) chronic blockade of alpha1-ARs affects both the thymus structure and thymocyte differentiation, ii) these effects are age-dependent, pointing out to pharmacological manipulation of alpha1-AR-mediated signaling as potential means for modulation of the intrathymic T-cell maturation.  相似文献   

16.
T cells differentiate from bone marrow-derived stem cells by expressing developmental stage-specific genes. We here searched arrays of genes that are highly expressed in mature CD4-CD8+ (CD8 single-positive (SP)) T cells but little in CD4+CD8+ (double-positive (DP)) cells by cDNA subtraction. Lunatic fringe (Lfng), a modulator of Notch signaling, was identified to be little expressed in DP cells and highly expressed in CD8SP T cell as well as in CD4-CD8- (double-negative (DN)) and mature CD4+CD8- (CD4SP) T cells. Thus, we examined whether such change of expression of Lfng plays a role in T cell development. We found that overexpression of Lfng in Jurkat T cells strengthened Notch signaling by reporter gene assay, indicating that Lfng is a positive regulator for Notch signaling in T cells. The enforced expression of Lfng in thymocytes enhanced the development of immature CD8SP cells but decreased mature CD4SP and CD8SP cells. In contrast, the down-regulation of Lfng in thymocytes suppressed DP cells development due to the defective transition from CD44+CD25- stage to subsequent stage in DN cells. The overexpression of Lfng in fetal liver-derived hemopoietic stem cells enhanced T cell development, whereas its down-regulation suppressed it. These results suggested that the physiological high expression of Lfng in DN cells contributes to enhance T cell differentiation through strengthening Notch signaling. Shutting down the expression of Lfng in DP cells may have a physiological role in promoting DP cells differentiation toward mature SP cells.  相似文献   

17.
Histone deacetylase 7 (HDAC7) is a T‐cell receptor (TCR) signal‐dependent regulator of differentiation that is highly expressed in CD4/CD8 double‐positive (DP) thymocytes. Here, we examine the effect of blocking TCR‐dependent nuclear export of HDAC7 during thymic selection, through expression of a signal‐resistant mutant of HDAC7 (HDAC7‐ΔP) in thymocytes. We find that HDAC7‐ΔP transgenic thymocytes exhibit a profound block in negative thymic selection, but can still undergo positive selection, resulting in the escape of autoreactive T cells into the periphery. Gene expression profiling reveals a comprehensive suppression of the negative selection‐associated gene expression programme in DP thymocytes, associated with a defect in the activation of MAP kinase pathways by TCR signals. The consequence of this block in vivo is a lethal autoimmune syndrome involving the exocrine pancreas and other abdominal organs. These experiments establish a novel molecular model of autoimmunity and cast new light on the relationship between thymic selection and immune self‐tolerance.  相似文献   

18.
Intrathymic maturation of thymocytes is essential for the proper formation of T-cell repertoire. This process involves two major biochemical pathways, one initiated by the recognition of MHC/peptide by the T-cell receptor and the other mediated by glucocorticoids. These hormones seem to affect thymocyte maturation by increasing the threshold of TCR-mediated positive and negative selection, and by inducing apoptosis of nonselected thymocytes. We have previously reported that an SV40-immortalized murine thymic epithelial cell line, namely 2BH4, was able to protect thymocytes from dexamethasone-induced apoptosis. Here we show that this protection is independent of cell-to-cell contact and does not seem to involve a Bcl-2-mediated resistance, since incubation of thymocytes with 2BH4 cells or its supernatant does not interfere with the levels of this antiapoptotic molecule. The protection conferred by 2BH4 cells, or by a primary culture of thymic stromal cells, is specific for the CD4(+)CD8(-) and CD4(-)CD8(+) single-positive thymocytes, whereas the broad-spectrum caspase inhibitor z-VAD-fmk blocks apoptosis induced by dexamethasone in all thymocyte subpopulations. Our results suggest that positively selected single-positive thymocytes are still susceptible to glucocorticoid-induced apoptosis but are protected from it through the action of a heat-stable protein(s) released by thymic stromal cells.  相似文献   

19.
CD4(+)CD8(+) double-positive (DP) thymocytes express a lower level of surface TCR than do mature T cells or single-positive (SP) thymocytes. Regulation of the TCR on DP thymocytes appears to result from intrathymic signaling, as in vitro culture of these cells results in spontaneous TCR up-regulation. In this study, we examined cell spreading and cytoskeletal polarization responses that have been shown to occur in response to TCR engagement in mature T cells. Using DP thymocytes stimulated on lipid bilayers or nontransgenic thymocytes added to anti-CD3-coated surfaces, we found that cell spreading and polarization of the microtubule organizing center and the actin cytoskeleton were inefficient in freshly isolated DP thymocytes, but were dramatically enhanced after overnight culture. SP (CD4(+)) thymocytes showed efficient responses to TCR engagement, suggesting that releasing DP thymocytes from the thymic environment mimics some aspects of positive selection. The poor translation of a TCR signal to cytoskeletal responses could limit the ability of DP thymocytes to form stable contacts with APCs and may thereby regulate thymocyte selection during T cell development.  相似文献   

20.
Untransformed CD4(+) Th1 cells stimulated with Ag and APC demonstrated a dependence on B7- and CD28-mediated costimulatory signals for the expression and function of AP-1 proteins. The induction of transactivation by the c-fos gene regulator Elk-1 mirrored this requirement for TCR and CD28 signal integration. c-Jun N-terminal kinase (JNK) (but not extracellular signal-regulated kinase or p38) protein kinase activity was similarly inhibited by neutralizing anti-B7 mAbs. Blockade of JNK protein kinase activity with SB 202190 prevented both Elk-1 transactivation and c-Fos induction. These results identify a unique role for B7 costimulatory molecules and CD28 in the activation of JNK during Ag stimulation in Th1 cells, and suggest that JNK regulates Elk-1 transactivation at the c-fos gene to promote the formation of AP-1 complexes important to IL-2 gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号