首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excess hepatic lipid accumulation and oxidative stress contribute to nonalcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activities of green tea extract (GTE) would attenuate events leading to NAFLD. Obese mice (ob/ob; 5 weeks old, n=38) and their lean littermates (n=12) were fed 0%, 0.5% or 1% GTE for 6 weeks. Then, hepatic steatosis, oxidative stress and inflammatory markers were measured. Obese mice, compared to lean controls, had greater hepatic lipids and serum alanine aminotransferase (ALT). GTE at 1% lowered (P<.05) hepatic lipids and ALT in obese mice. The GTE-mediated attenuation in hepatic steatosis was accompanied by decreased mRNA expression of adipose sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl CoA desaturase-1, and hormone-sensitive lipase and decreased serum nonesterified fatty acid concentrations. Immunohistochemical data indicated that steatotic livers from obese mice had extensive accumulation of tumor necrosis factor-α (TNF-α), whereas GTE at 1% decreased hepatic TNF-α protein and inhibited adipose TNF-α mRNA expression. Hepatic total glutathione, malondialdehyde and Mn- and Cu/Zn-superoxide dismutase activities in obese mice fed GTE were normalized to the levels of lean littermates. Also, GTE increased hepatic catalase and glutathione peroxidase activities, and these activities were inversely correlated with ALT and liver lipids. Collectively, GTE mitigated NAFLD and hepatic injury in ob/ob mice by decreasing the release of fatty acids from adipose and inhibiting hepatic lipid peroxidation as well as restoring antioxidant defenses and decreasing inflammatory responses. These findings suggest that GTE may be used as an effective dietary strategy to mitigate obesity-triggered NAFLD.  相似文献   

2.
Pyrazole treatment to induce cytochrome P-450 2E1 (CYP2E1) was recently shown to cause liver injury in ob/ob mice but not in lean mice. The present study investigated the effects of S-adenosyl-l-methionine (SAM) on the CYP2E1-dependent liver injury in ob/ob mice. Pyrazole treatment of ob/ob mice for 2 days caused necrosis, steatosis, and elevated serum transaminase and triglyceride levels compared with saline ob/ob mice. Administration of SAM (50 mg/kg body wt ip every 12 h for 3 days) prevented the observed pathological changes as well as the increase of apoptotic hepatocytes, caspase 3 activity, and serum TNF-alpha levels. SAM administration inhibited CYP2E1 activity but not CYP2E1 content. The pyrazole treatment increased lipid peroxidation, 4-hydroxynonenal and 3-nitrotyrosine protein adducts, and protein carbonyls. These increases in oxidative and nitrosative stress were prevented by SAM. Treatment of ob/ob mice with pyrazole lowered the endogenous SAM levels, and these were elevated after SAM administration. Mitochondrial GSH levels were very low after pyrazole treatment of the ob/ob mice; this was associated with elevated levels of malondialdehyde and 4-hydroxynonenal and 3-nitrotyrosine protein adducts in the mitochondria. All these changes were prevented with SAM administration. SAM protected against pyrazole-induced increase in serum transaminases, necrosis, triglyceride levels, caspase-3 activity, and lipid peroxidation even when administered 1 day after pyrazole treatment. In the absence of pyrazole, SAM lowered the slightly elevated serum transaminases, triglyceride levels, caspase-3 activity, and lipid peroxidation in obese mice. In conclusion, SAM protects against and can also reverse or correct CYP2E1-induced liver damage in ob/ob mice.  相似文献   

3.
Excessive tissue iron levels are associated with the increase of oxidative/nitrative stress which contributes to tissue damage that may elevate the risk of diabetes. Therefore, we investigated the effects of iron on diabetes-associated liver injury and whether iron-related tyrosine nitration participated in this process. Rats were randomly divided into four groups: control, iron overload (300 mg/kg iron dextran, i.p.), diabetic (35 mg/kg of streptozotocin i.p. after administration of a high-fat diet) and diabetic simultaneously treated with iron. Iron supplement markedly increased diabetes-mediated liver damage and hepatic dysfunction by increasing liver/body weight ratio, serum levels of aspartate and alanine aminotransferase, and histological examination, which were correlated with elevated levels of lipid peroxidation, protein carbonyls and tyrosine nitration, oxidative metabolism of nitric oxide, and reduced antioxidant capacity. Consequently, the extent of oxidized/nitrated glucokinase was markedly increased in the iron-treated diabetic rats that contribute to a decrease in its expression and activity. Further studies revealed a significant contribution of iron-induced specific glucokinase nitration sites to its inactivation. In conclusion, iron facilitates diabetes-mediated elevation of oxidative/nitrative stress, simultaneously impairs liver GK, and can be a link between enzymatic changes and hepatic dysfunction. These findings may provide new insight on the role of iron in the pathogenesis of diabetes mellitus.  相似文献   

4.
Green tea extract (GTE) reduces NFκB-mediated inflammation during nonalcoholic steatohepatitis (NASH). We hypothesized that its anti-inflammatory activities would be mediated in a Toll-like receptor 4 (TLR4)-dependent manner. Wild-type (WT) and loss-of-function TLR4-mutant (TLR4m) mice were fed a high-fat diet containing GTE at 0 or 2% for 8 weeks before assessing NASH, NFκB-mediated inflammation, TLR4 and its adaptor proteins MyD88 and TRIF, circulating endotoxin, and intestinal tight junction protein mRNA expression. TLR4m mice had lower (P < .05) body mass compared with WT mice but similar adiposity, whereas body mass and adiposity were lowered by GTE regardless of genotype. Liver steatosis, serum alanine aminotransferase, and hepatic lipid peroxidation were also lowered by GTE in WT mice, and were similarly lowered in TLR4m mice regardless of GTE. Phosphorylation of the NFκB p65 subunit and pro-inflammatory genes (TNFα, iNOS, MCP-1, MPO) were lowered by GTE in WT mice, and did not differ from the lowered levels in TLR4m mice regardless of GTE. TLR4m mice had lower TLR4 mRNA, which was also lowered by GTE in both genotypes. TRIF expression was unaffected by genotype and GTE, whereas MyD88 was lower in mice fed GTE regardless of genotype. Serum endotoxin was similarly lowered by GTE regardless of genotype. Tight junction protein mRNA levels were unaffected by genotype. However, GTE similarly increased claudin-1 mRNA in the duodenum and jejunum and mRNA levels of occludin and zonula occluden-1 in the jejunum and ileum. Thus, GTE protects against inflammation during NASH, likely by limiting gut-derived endotoxin translocation and TLR4/MyD88/NFκB activation.  相似文献   

5.
Hepatic mitochondrial and peroxisomal oxidative capacities were studied in young (4-5 weeks old) and adult (6-9 months old) lean and obese ob/ob mice that were fed or starved for 24 or 48 h. The adult obese mice showed elevated capacity for mitochondrial oxidation (ng-atoms of O consumed/min per mg of protein) of lipid and non-lipid substrates, with the exception of pyruvate + malate, and elevated activities of citrate synthase and total carnitine palmitoyltransferase. Oxidative rates and enzyme activities were not affected by starvation of lean or obese mice, and both males and females responded similarly. Peroxisomal palmitoyl-CoA oxidation (nmol/min per mg of peroxisomal protein) was also increased in livers of adult obese mice and did not change with starvation. In young mice, hepatic mitochondrial and peroxisomal oxidative capacities in lean and obese mice were comparable. The increased mitochondrial and peroxisomal oxidative capacities appear to develop with maturation in obese ob/ob mice.  相似文献   

6.
Oxidative stress contributes towards the development of nonalcoholic steatohepatitis (NASH). Thus, antioxidants may decrease oxidative stress and ameliorate the events contributing to NASH. We hypothesized that α- or γ-tocopherol would protect against lipopolysaccharide (LPS)-triggered NASH in an obese (ob/ob) mouse model. Five-week-old obese mice (n=18/dietary treatment) were provided 15 mg/kg each of α- and γ-tocopherol or 500 mg/kg of α- or γ-tocopherol for 5-weeks. Then, all mice were injected ip once with LPS (250 μg/kg) before being sacrificed at 0, 1.5 or 6 h. Body weight and hepatic steatosis were unaffected by tocopherols and LPS. Hepatic α- and γ-tocopherol increased (P<.05) ~9.8- and 10-fold in respective tocopherol supplemented mice and decreased in response to LPS. LPS increased serum alanine aminotransferase (ALT) by 86% at 6 h and each tocopherol decreased this response by 29–31%. By 6 h, LPS increased hepatic malondialdehyde (MDA) and tumor necrosis factor-α by 81% and 44%, respectively, which were decreased by α- or γ-tocopherol. Serum ALT was correlated (P<.05) to hepatic tumor necrosis factor-α (r=0.585) and MDA (r=0.592), suggesting that inflammation and lipid peroxidation contributed to LPS-triggered hepatic injury. α- and γ-Tocopherol similarly attenuated LPS-triggered increases in serum free fatty acid, and α-tocopherol only maintained the LPS-triggered serum triacylglycerol responses at 6 h. These findings indicate that increasing hepatic α- or γ-tocopherol protected against LPS-induced NASH by decreasing liver damage, lipid peroxidation, and inflammation without affecting body mass or hepatic steatosis. Further study is needed to define the mechanisms by which these tocopherols protected against LPS-triggered NASH.  相似文献   

7.
Oxidative stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS)-2 have been shown in the pathogenesis of liver ischemia–reperfusion (IR) injury. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression therefore this study determined the role of selective N-SMase inhibition on nitrative and oxidative stress markers following liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60 min, followed by 60 min reperfusion. Nitrative and oxidative stress markers were determined by evaluating NOS2 expression, protein nitration, nitrite/nitrate levels, 4-hydroxynonenal (HNE) formation, protein carbonyl levels and xanthine oxidase/xanthine dehydrogenase (XO/XDH) activity. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reaction monitoring method using ultra-fast liquid chromatography coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared to controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. NOS2 expression, nitrite/nitrate levels and protein nitration were significantly greater in IR injury and decreased with N-SMase inhibition. Treatment with a selective N-SMase inhibitor significantly decreased HNE formation, protein carbonyl levels and the hepatic conversion of XO. Data confirm the role of nitrative and oxidative injury in IR and highlight the protective effect of selective N-SMase inhibition. Future studies evaluating agents blocking N-SMase activity can facilitate the development of treatment strategies to alleviate oxidative injury in liver I/R injury.  相似文献   

8.
The present study was undertaken to evaluate the effect of aminoguanidine (AG) on carbon tetrachloride (CCl4)-induced hepatotoxicity. Treatment of mice with CCl4 (20 microl/kg, i.p.) resulted in damage to centrilobular regions of the liver, increase in serum aminotransferase and rise in lipid peroxides level 24 hours after CCl4 administration. Pretreatment of mice with AG (50 mg/kg, i.p.) 30 minutes before CCl4 was found to protect mice from the CCl4-induced hepatic toxicity. This protection was evident from the significant reduction in serum aminotransferase, inhibition of lipid peroxidation and prevention of CCl4-induced hepatic necrosis revealed by histopathology. Aminoguanidine, a relatively specific inhibitor of inducible nitric oxide synthase, did not inhibit the in vitro lipid peroxidation. Taken together, these data suggest a potential role of nitric oxide as an important mediator of CCl4-induced hepatotoxicity.  相似文献   

9.
Catechin-rich green tea extract (GTE) protects against nonalcoholic steatohepatitis (NASH) by alleviating gut-derived endotoxin translocation and hepatic Toll-like receptor-4 (TLR4)–nuclear factor κB (NFκB) inflammation. We hypothesized that intact GTE would attenuate NASH-associated responses along the gut–liver axis to a greater extent than purified (−)-epigallocatechin gallate (EGCG) or (+)-catechin (CAT). Male C57BL/6J mice were fed a low-fat diet, a high-fat (HF) diet, or the HF diet with 2% GTE, 0.3% EGCG or 0.3% CAT for 8 weeks prior to assessing NASH relative to endotoxemia, hepatic and intestinal inflammation, intestinal tight junction proteins (TJPs) and gut microbial ecology. GTE prevented HF-induced obesity to a greater extent than EGCG and CAT, whereas GTE and EGCG more favorably attenuated insulin resistance. GTE, EGCG and CAT similarly attenuated serum alanine aminotransferase and serum endotoxin, but only GTE and EGCG fully alleviated HF-induced NASH. However, hepatic TLR4/NFκB inflammatory responses that were otherwise increased in HF mice were similarly attenuated by GTE, EGCG and CAT. Each treatment also similarly prevented the HF-induced loss in expression of intestinal TJPs and hypoxia inducible factor-1α and the otherwise increased levels of ileal and colonic TNFα mRNA and fecal calprotectin protein concentrations. Gut microbial diversity that was otherwise lowered in HF mice was maintained by GTE and CAT only. Further, microbial metabolic functions were more similar between GTE and CAT. Collectively, GTE catechins similarly protect against endotoxin–TLR4–NFκB inflammation in NASH, but EGCG and CAT exert differential prebiotic and antimicrobial activities suggesting that catechin-mediated shifts in microbiota composition are not entirely responsible for their benefits along the gut–liver axis.  相似文献   

10.
11.
Protein tyrosine nitration, protein oxidation and lipid peroxidation are nitrative/oxidative modification of protein and lipids. In this paper, a BSA (bovine serum albumin)-lecithin liposome system was used to study the nature of different forms of iron, including methemoglobin, hemin and ferric citrate, in catalyzing H2O2-nitrite system to oxidize protein and lipid as well as nitrate protein. It was found that in pH range of 5.0-9.0, in pure BSA solution or pure liposome solution, hemin and methemoglobin catalyzed protein tyrosine nitration and lipid peroxidation were decreased with the increasing of pH, while hemin and methemoglobin catalyzed protein oxidation was significantly and moderately increased, respectively. Lipid completely inhibited hemin catalyzed protein tyrosine nitration but only partially inhibited methemoglobin catalyzed protein tyrosine nitration, and its inhibitory effect on hemin induced protein oxidation was also more pronounced. In addition, BSA showed more efficient in inhibiting hemin and ferric citrate induced lipid peroxidation. At the same condition, ferric citrate was relatively ineffective in all tests. Considering protein tyrosine nitration, protein oxidation and lipid oxidation as overall oxidative damage, these results indicated that methemoglobin is more toxic than hemin and ferric citrate, the degradation procedure of heme containing macromolecules, e.g. hemoglobin to hemin and finally to low molecular weight bounded iron, is step by step detoxification. These results provide fundamental knowledge on oxidative/nitrative of biomolecules in lipid-protein coexistence system.  相似文献   

12.
NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.  相似文献   

13.
Overdose of acetaminophen (APAP) is responsible for the most cases of acute liver failure worldwide. Hepatic mitochondrial damage mediated by neuronal nitric oxide synthase- (nNOS) induced liver protein tyrosine nitration plays a critical role in the pathophysiology of APAP hepatotoxicity. It has been reported that pre-treatment or co-treatment with glycyrrhizin can protect against hepatotoxicity through prevention of hepatocellular apoptosis. However, the majority of APAP-induced acute liver failure cases are people intentionally taking the drug to commit suicide. Any preventive treatment is of little value in practice. In addition, the hepatocellular damage induced by APAP is considered to be oncotic necrosis rather than apoptosis. In the present study, our aim is to investigate if glycyrrhizin can be used therapeutically and the underlying mechanisms of APAP hepatotoxicity protection. Hepatic damage was induced by 300 mg/kg APAP in balb/c mice, followed with administration of 40, 80, or 160 mg/kg glycyrrhizin 90 min later. Mice were euthanized and harvested at 6 h post-APAP. Compared with model controls, glycyrrhizin post-treatment attenuated hepatic mitochondrial and hepatocellular damages, as indicated by decreased serum glutamate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities as well as ameliorated mitochondrial swollen, distortion, and hepatocellular necrosis. Notably, 80 mg/kg glycyrrhizin inhibited hepatic nNOS activity and its mRNA and protein expression levels by 16.9, 14.9, and 28.3%, respectively. These results were consistent with the decreased liver nitric oxide content and liver protein tyrosine nitration indicated by 3-nitrotyrosine staining. Moreover, glycyrrhizin did not affect the APAP metabolic activation, and the survival rate of ALF mice was increased by glycyrrhizin. The present study indicates that post-treatment with glycyrrhizin can dose-dependently attenuate hepatic mitochondrial damage and inhibit the up-regulation of hepatic nNOS induced by APAP. Glycyrrhizin shows promise as drug for the treatment of APAP hepatotoxicity.  相似文献   

14.
Inhibition of the proteasomal pathway for degrading abnormal proteins leads to protein aggregation, increased oxidative damage and increased protein nitration. We now show that interference with polyubiquitination has similar consequences. Expression of a dominant-negative mutant form of ubiquitin (K48R) in NT-2 and SK-N-MC cells caused decreased cell growth rates and increased oxidative damage (protein carbonyls and lipid peroxidation), nitric oxide production and elevated protein nitration. It also rendered cells highly sensitive to 4-hydroxy-2,3-trans-nonenal, a neurotoxic end-product of lipid peroxidation, hydrogen peroxide and deprivation of growth factors. Overexpression of wild-type ubiquitin did not produce these effects. Our data show that interference with the ubiquitin-proteasome pathway at a different point and by a different mechanism can produce many of the common features of human neurodegenerative diseases, such as increased lipid peroxidation, protein oxidation and protein nitration. We suggest that defects in this pathway at multiple points could produce the common features of neurodegenerative diseases, and that more such defects remain to be discovered.  相似文献   

15.
Steatosis is a major risk factor for complications after liver surgery. Since neutrophil cytotoxicity is critical for ischemia-reperfusion injury in normal livers, the aim of the present study was to evaluate whether an exaggerated inflammatory response could cause the increased injury in steatotic livers. In C57Bl/6 mice, 60 min of warm hepatic ischemia triggered a gradual increase in hepatic neutrophil accumulation during reperfusion with peak levels of 100-fold over baseline at 12 h of reperfusion. Neutrophil extravasation and a specific neutrophil-induced oxidant stress (immunostaining for hypochlorous acid-modified epitopes) started at 6 h of reperfusion and peaked at 12-24 h. Ob/ob mice, which had a severe macrovesicular steatosis, suffered significantly higher injury (alanine transaminase activity: 18,000 +/- 2,100 U/l; 65% necrosis) compared with lean littermates (alanine transaminase activity: 4,900 +/- 720 U/l; 24% necrosis) at 6 h of reperfusion. However, 62% fewer neutrophils accumulated in steatotic livers. This correlated with an attenuated increase in mRNA levels of several proinflammatory genes in ob/ob mice during reperfusion. In contrast, sham-operated ob/ob mice had a 50% reduction in liver blood flow and 35% fewer functional sinusoids compared with lean littermates. These deficiencies in liver blood flow and the microcirculation were further aggravated only in ob/ob mice during reperfusion. The attenuated inflammatory response and reduced neutrophil-induced oxidant stress observed in steatotic livers during reperfusion cannot be responsible for the dramatically increased injury in ob/ob mice. In contrast, the aggravated injury appears to be mediated by ischemic necrosis due to massive impairment of blood and oxygen supply in the steatotic livers.  相似文献   

16.
Arrhenius plots of fluoride- and guanine-nucleotide-stimulated adenylate cyclase activity were linear in adipocyte plasma membranes from lean and obese (ob/ob) mice . Arrhenius plots of isoprenaline-stimulated adenylate cyclase activity in hepatic plasma membranes biphasic in both groups. The results were biphasic in membranes from Jean mice but linear in membranes from obese mice. In contrast, Arrhenius plots of glucagon-stimulated adenylate cyclase activity in hepatic plasma membranes were biphasic in both groups. The results suggest that the coupling between the -receptor and the regulatory unit of adenylate cyclase, which has been observed to be defective in adipocyte plasma membranes from obese mice, is influenced by a different lipid environment in membranes from obese animals.  相似文献   

17.
Microsomal triglyceride transfer protein (Mttp) is a key player in the assembly and secretion of hepatic very low density lipoproteins (VLDL). Here we determined the effects of Mttp overexpression on hepatic triglyceride (TG) and VLDL secretion in leptin-deficient (ob/ob) mice, specifically in relation to apolipoproteinB (apoB) isoforms. We crossed Apobec1(-/-) mice with congenic ob/ob mice to generate apoB100-only ob/ob mice (A-ob/ob). The obesity phenotype in both genotypes was similar, but A-ob/ob mice had greater hepatic TG content. Administration of recombinant adenovirus expressing murine Mttp cDNA (Ad-mMTP) increased hepatic Mttp content and activity and increased hepatic VLDL-TG secretion in A-ob/ob mice. However, despite equivalent overexpression of Mttp, there was no change in VLDL-TG secretion in ob/ob mice in a wild-type Apobec1 background. Metabolic labeling studies in primary hepatocytes from A-ob/ob mice demonstrated that Ad-mMTP increased triglyceride secretion without changing the synthesis and secretion of apoB100, suggesting greater incorporation of TG into existing VLDL particles rather than increased particle number. Ad-mMTP administration failed to increase hepatic VLDL secretion in lean Apobec1(-/-) mice or controls. By contrast, VLDL secretion increased and hepatic TG content decreased following Ad-mMTP administration to human APOB transgenic mice crossed into the Apobec1(-/-) line. These findings demonstrate that Ad-mMTP increases murine hepatic VLDL-TG secretion only in the apoB100 background, and even then only in situations with either increased hepatic TG accumulation or increased apoB100 expression.  相似文献   

18.
In diabetic states, hyperinsulinemia may negatively regulate Akt/endothelial nitric oxide synthase (eNOS) activation. Our main aim was to investigate whether and how insulin might negatively regulate Akt/eNOS activities via G protein-coupled receptor kinase 2 (GRK2) in aortas from ob/ob mice. Endothelium-dependent relaxation was measured in aortic rings from ob/ob mice (a type 2 diabetes model). GRK2, β-arrestin2, and Akt/eNOS signaling-pathway protein levels and activities were mainly assayed by Western blotting. Plasma insulin was significantly elevated in ob/ob mice. Insulin-induced relaxation was significantly decreased in the ob/ob aortas [vs. age-matched control (lean) ones]. The response in ob/ob aortas was enhanced by PKC inhibitor or GRK2 inhibitor. Akt (at Thr(308)) phosphorylation and eNOS (at Ser(1177)) phosphorylation, and also the β-arrestin2 protein level, were markedly decreased in the membrane fraction of insulin-stimulated ob/ob aortas (vs. insulin-stimulated lean ones). These membrane-fraction expressions were enhanced by GRK2 inhibitor and by PKC inhibitor in the ob/ob group but not in the lean group. PKC activity was much greater in ob/ob than in lean aortas. GRK2 protein and activity levels were increased in ob/ob and were greatly reduced by GRK2 inhibitor or PKC inhibitor pretreatment. These results suggest that in the aorta in diabetic mice with hyperinsulinemia an upregulation of GRK2 and a decrease in β-arrestin2 inhibit insulin-induced stimulation of the Akt/eNOS pathway and that GRK2 overactivation may result from an increase in PKC activity.  相似文献   

19.
The relationship between the hyperinsulinaemia of obese--hyperglycaemic (ob/ob) mice and their high activity of stearic acid delta 9-desaturase compared with lean mice has been investigated. The concentrations of plasma insulin in obese mice were decreased by 71, 88 and 96% after treatment either with alloxan or food restriction to maintain the same weight as lean mice, or treatment of the weight restricted mice with alloxan followed by feeding ad libitum. The concentration of plasma insulin produced by the latter treatment was the same as in normal lean mice. After treatment the hepatic desaturase activities were 24, 68 and 19% less respectively on a cell basis than in livers from untreated obese mice, and the total epididymal fat-pad activities were lower by 16, 62 and 57%. These results suggest that hyperinsulinaemia is not essential for the increased hepatic desaturase, controlling the hepatic desaturase activity, but even this may be subject to overriding regulation by the concentration of esterified linoleic acid in the liver lipids, which was negatively correlated (r = 0.91, P less than 0.001) with desaturase activity.  相似文献   

20.
Obesity and type 2 diabetes are associated with nonalcoholic steatohepatitis (NASH), but an obese/diabetic animal model that mimics human NASH remains undefined. We examined the induction of steatohepatitis and liver fibrosis in obese and type 2 diabetic db/db mice in a nutritional model of NASH and determined the relationship of the expressions of osteopontin (OPN) and leptin receptors to the pathogenesis of NASH. db/db mice and the corresponding lean and nondiabetic db/m mice were fed a diet deficient in methionine and choline (MCD diet) or control diet for 4 wk. Leptin-deficient obese and diabetic ob/ob mice fed similar diets were used for comparison. MCD diet-fed db/db mice exhibited significantly greater histological inflammation and higher serum alanine aminotransferase levels than db/m and ob/ob mice. Trichrome staining showed marked pericellular fibrosis in MCD diet-fed db/db mice but no significant fibrosis in db/m or ob/ob mice. Collagen I mRNA expression was increased 10-fold in db/db mice, 4-fold in db/m mice, and was unchanged in ob/ob mice. mRNA expressions of OPN, TNF-alpha, TGF-beta, and short-form leptin receptors (Ob-Ra) were significantly increased in db/db mice compared with db/m or ob/ob mice. Parallel increases in OPN and Ob-Ra protein levels were observed in db/db mice. Cultured hepatocytes expressed only Ob-Ra, and leptin stimulated OPN mRNA and protein expression in these cells. In conclusion, our results demonstrate the development of an obese/diabetic experimental model for NASH in db/db mice and suggest an important role for Ob-Ra and OPN in the pathogenesis of NASH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号