首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkaline invertase was induced during the initiation of suspension cultures of single cells from leaf explants of sugar beets in Murashige-Skoog liquid medium which contained benzyladenine. This activity was barely detectable in the leaves themselves. In suspension cultures, the presence of both acid and alkaline invertases was detected; alkaline invertase was only present in the cytoplasm of the cultured cells, whereas acid invertase was present in the cytoplasm and cell walls, and was also detected in the culture medium. The cell wall contained at least three types of acid invertase; two of these activities were solubilized by saline (saline-released) and EDTA (EDTA-released), respectively, and the third remained tightly associated with the cell wall. Saline-released and EDTA-released invertases from the cell wall showed the significant differences in their properties: the saline-released enzyme had the highest affinity for sucrose among the invertases tested, and was easily bound to cell walls, to DNA, and to a cation exchanger, unlike the EDTA-released enzyme. Sucrose is the source of carbon for plant cells in suspension culture and is probably degraded in the cell wall by the saline-released invertase, which had the highest activity and the highest affinity for sucrose. Hexose products of this degradation would be transported to cytoplasm. Soluble invertase, EDTA-released invertase from the cell wall, and one of two extracellular invertases behaved similarly upon chromatography on DEAE-cellulose. They had similar activity profiles with changing pH, and similar Km values for sucrose. Thus it appears that they are identical. Two extracellular invertases found in the growth medium of the suspension cultures were probably identical with those in the soluble fraction of callus and seedlings of sugar beets, because they showed similar behaviors during chromatography on DEAE-cellulose, and had similar activity profiles with changing pH and Km values for sucrose.  相似文献   

2.
Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import remains to be determined.  相似文献   

3.
Sucrose translocation and storage in the sugar beet   总被引:14,自引:9,他引:5       下载免费PDF全文
Several physiological processes were studied during sugar beet root development to determine the cellular events that are temporally correlated with sucrose storage. The prestorage stage was characterized by a marked increase in root fresh weight and a low sucrose to glucose ratio. Carbon derived from 14C-sucrose accumulation was partitioned into protein and structural carbohydrate fractions and their amino acid, organic acid, and hexose precursors. The immature root contained high soluble acid invertase activity (Vmax 20 micromoles per hour per milligram protein; Km 2 to 3 millimolar) which disappeared prior to sucrose storage. Sucrose storage was characterized by carbon derived from 14C-sucrose uptake being partitioned into the sucrose fraction with little evidence of further metabolism. The onset of storage was accompanied by the appearance of sucrose synthetase activity (Vmax 12 micromoles per hour per milligram protein; Km 7 millimolar). Neither sucrose phosphate synthetase nor alkaline invertase activities were detected during beet development. Intact sugar beet plants (containing a 100-gram beet) exported 70% of the translocate to the beet, greater than 90% of which was retained as sucrose with little subsequent conversions.  相似文献   

4.
C. P. P. Ricardo 《Planta》1974,118(4):333-343
Summary Alkaline invertase of roots of carrot (Daucus carota L.) did not hydrolyze raffinose while the acid invertase from the same tissue showed with this sugar ca. 60% of the activity found with sucrose. The activity of the two invertases was inhibited by fructose to a different extent, the K i value being ca. 4×10–2 M and 3×10–1M, respectively, for the alkaline and the acid invertases from the roots of both carrot and turnip (Brassica rapa L.). It is proposed that fructose inhibition of acid invertase is of no physiological significance but that, in contrast, hexoses might regulate the activity of alkaline invertase.Comparing several species and cultivars, it was found that the content of reducing sugars and the activity of alkaline invertase of mature tuberous roots showed a positive correlation. This indicates that alkaline invertase may participate in the regulation of the hexose level of the cell, as was previously suggested for sugar-cane. A scheme is presented which proposes a way of participation of alkaline invertase in such a regulation, assuming that this enzyme is located in the cytoplasm and acid invertase is membrane-bound and mainly located at the cell surface.  相似文献   

5.
Sugar content largely determines watermelon fruit quality. We compared changes in sugar accumulation and activities of carbohydrate enzymes in the flesh (central portion) and mesocarp of elite sweet watermelon line 97103 (Citrullus lanatus subsp. vulgaris) and exotic non-sweet line PI296341-FR (C. lanatus subsp. lanatus) to elucidate the physiological and biochemical mechanisms of sugar accumulation in watermelon fruit. The major translocated sugars, raffinose and stachyose, were more unloaded into sweet watermelon fruit than non-sweet fruit. During the fruit development, acid α-galactosidase activity was much higher in flesh of 97103 than in mesocarp of 97103, in flesh and mesocarp of PI296341-FR fruit. Insoluble acid invertase activity was higher in 97103 flesh than in 97103 mesocarp, PI296341-FR flesh or mesocarp from 18 days after pollination (DAP) to 34 DAP. Changes in soluble acid invertase activity in 97103 flesh were similar to those in PI296341-FR flesh and mesocarp from 18 DAP to full ripening. Sucrose synthase and sucrose phosphate synthase activities in 97103 flesh were significantly higher than those in 97103 mesocarp and PI296341-FR fruits from 18 to 34 DAP. Only insoluble acid invertase and sucrose phosphate synthase activities were significantly positively correlated with sucrose content in 97103 flesh. Therefore, phloem loading, distribution and metabolism of major translocated sugars, which are controlled by key sugar metabolism enzymes, determine fruit sugar accumulation in sweet and non-sweet watermelon and reflect the distribution diversity of translocated sugars between subspecies.  相似文献   

6.
The sucrose breakdown mechanisms in juice sacs of acid lime (Citrus aurantifolia [Christm.] Swing.) were investigated throughout fruit development. All three enzymes of sucrose catabolism (sucrose synthase, acid, and alkaline invertase) are present during the initial stages. The activities of these enzymes declined rapidly and disappeared by stage 5 (80% development) but not before vacuolar pH had decreased to approximately 2.5. At this stage, sucrose breakdown occurs by acid hydrolysis. By attaining a vacuolar pH of 2.5 prior to enzyme disappearance, the cell maintains a continuous ability to break down sucrose throughout ontogeny. Thus, acid limes possess a unique and coordinated system for sucrose breakdown that involves both enzymatic and nonenzymatic pathways.  相似文献   

7.
Acid and neutral invertases were found in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit and the activities of these enzymes declined with maturation of the fruit, concomitantly with the accumulation of sucrose. Neutral invertase was only present in the soluble fraction and acid invertase was present in both the soluble and cell-wall fractions. The cell-wall fraction contained three types of acid invertase: a NaCl-released invertase; an EDTA-released invertase, and a tightly bound invertase that still remained on the cell wall after treatment with NaCl and EDTA. The soluble acid and neutral invertases could be separated from one another by chromatography on DEAE-cellulose and they exhibited clear differences in their properties, namely, in their pH optima, substrate specificity, Km values for sucrose, and inhibition by metal ions. The EDTA-released invertase and the soluble acid invertase were similar with regard to their chromatographic behavior on DEAE-cellulose, but the NaCl-released invertase was different because it was adsorbed to a column of CM-cellulose. The soluble acid invertase and two cell-wall bound invertases had very similar characteristics with regard to optimal pH and temperature, Km value for sucrose, and substrate specificity.  相似文献   

8.
(NH4)2SO4 fractionation followed by Sephadex G-200 chromatography of sugar cane juice gave an acid invertase with MW of 380 000 and 23.5% carbohydrate and a neutral invertase with MW of 66 000 and 22% carbohydrate. For acid invertase, Km is 2.8 mM and Vmax is 2.7 μmol sucrose hydrolysed/hr/mg protein. For neutral invertase, Km and Vmax are 0.32 mM and 2.8 μmol hydrolysed/hr/mg protein, respectively. Inhibition of both invertases by either lauryl sulfate or metasilicate is not competitive.  相似文献   

9.
Single cells were prepared from mesocarp tissue of ripe persimmon (Diospyros kaki cv. Fuyu) fruits, and inter- or intracellular localization of acid invertase (AI, EC 3.2.1.26) was studied. AI was localized in the intercellular fraction (cell wall fraction). AI was isolated and purified from the cell wall fraction of ripe persimmon fruits by column chromatography on SE-53 cellulose and Toyopearl HW 55F. The specific activity of purified AI was 570 units per mg protein at 30°C. The molecular mass of AI was estimated to be 44 kDa by gel filtration over Sephacryl S-200 and 70 kDa by SDS–PAGE. The optimum pH of the activity for sucrose was 4.25. The purified enzyme hydrolyzed sucrose and raffinose but not melibiose. The enzyme had a Km of 3.2 mM for sucrose and a Km of 2.6 mM for raffinose. Silver nitrate (5 μM), HgCI2 (2 μM), p-chloromercuribenzoate (100mM), pyridoxamine (10mM), and pyridoxine (2.5mM) inhibited AI activity by 95, 85, 100, 41, and 300%, respectively.  相似文献   

10.
In culture, the ectomycorrhiza-forming fungi Amanita muscaria (Pers. ex Fries) Hock. and Hebeloma crustuliniforme (Bull. ex Fries) Quel. only grow on media with glucose or fructose but not with sucrose as sole carbohydrate source. This is due to their lack of wall-bound invertase activity. Therefore, utilization of sucrose by the fungi within a mycorrhizal association is believed to depend on the wall-bound invertase activity of the host. This enzyme activity was studied in the apoplast of suspension cultured cells of Picea abies (L.) Karst. An ionically and a tightly wall-bound isoform of acid invertase were found that function as β-d -fructofuranoside-fructohydrolases (EC 3.2.1.26). The ionically bound enzyme could be easily released from walls of intact cells with buffer of high ionic strength. In its native form, the ionically bound invertase isoform is a monomeric protein with a molecular mass of 61 kDa, as determined by gel filtration and SDS-PAGE. Glycoprotein nature of the enzyme was demonstrated with antibodies directed against the digoxigenin-labeled protein. The Km values of both enzymes for sucrose, their natural substrate, are relatively high (ionically bound invertase Km= 16 mM, tightly bound invertase Km= 8.6 mM). Activity of both wall-bound invertase isoforms strongly depends on the apoplastic pH. They have a narrow pH-optimum and exhibit highest activity at pH 4.5. with elevated activity between pH 4.5 and 6.0. Furthermore, fructose acts as competitive inhibitor of both isoforms, whereas glucose is not inhibitory. Unloading of sucrose from host cells to the apoplastic interface of the Hartig net in ectomycorrhizae appears to depend on the rate of hydrolysis by the wall-bound invertase of the host. Since the activity of the plant invertase depends on the actual pH value and the fructose concentration in the mycorrhizal interface, we suggest that the fungus can actively influence the activity of the plant invertase by acidification of the cell wall and by fructose uptake. Thus, the fungus itself can regulate its own supply of glucose and fructose.  相似文献   

11.
A novel cDNA clone, functionally expressed in E. coli, was isolated from a L. temulentum L. cDNA library. The expressed protein hydrolysed sucrose with an apparent Km of approximately 18 mM, and produced equi-molar concentrations of glucose and fructose. Optimum activity was observed at pH 7-7.5; there was little or no activity at pH 5.5. The expressed protein did not hydrolyse raffinose, stachyose or maltose. The activity of the expressed protein was inhibited by fructose (50% at 15 mM) and TRIS (50% at 2.5 mM), but was not affected by MgCl2, CaCl2 or MnCl2. These findings suggest that this cDNA clone encodes for an alkaline/neutral invertase. Sequence analysis revealed little homology with published sequences for acid invertase, however the invertase motif (NDPN) identified in other invertases was present. Expression studies show that the gene encoding for this enzyme is not regulated by sucrose accumulation in leaf tissue.  相似文献   

12.
The soluble invertase activity in etiolated Avena seedlings was highest at the apex of the coleoptile and much lower in the primary leaf, mesocotyl, and root. The activity in all parts of the seedling consisted of two invertases (I and II) which were separated by chromatography on diethylaminoethylcellulose. Both enzymes appeared to be acid invertases, but they differed in molecular size, pH optimum, and the kinetic parameters Km and Vmax of their action on sucrose, raffinose, and stachyose. Invertase II had low stability at pH 3.5 and below, and exhibited high sensitivity to Hg2+, with complete inhibition by 2 micromolar HgCl2. Segments of coleoptiles incubated in water lost about two-thirds of the total invertase activity after 16 hours. The loss of activity was due primarily to a decrease in the level of invertase II. The loss of invertase was decreased by indoleacetic acid, 2,4-dichlorophenoxyacetic acid, and α-naphthaleneacetic acid but not by β-naphthaleneacetic acid and p-chlorophenoxyisobutyric acid. Conditions that inhibited auxin-induced growth of the segments (20 millimolar CaCl2 and 200 millimolar mannitol) also blocked the auxin effect on invertase loss.  相似文献   

13.
研究了柑橘果实膨大初期遮光处理对果皮色素、果实含糖量、光合产物在果实内的分配及果实中蔗糖代谢相关酶活力变化的影响.结果表明遮光处理使果皮中的叶绿素含量迅速降低而类胡萝卜素积累缓慢,蔗糖的相对含量则明显上升.遮光处理还促进了光合产物向果皮运输,相应地降低了汁囊中光合产物分配比率,使果实汁囊中蔗糖含量下降.果皮中SS、SPS和转化酶活力在遮光处理后均有较大的提高,而汁囊中则差异不大.上述结果表明,在果实自身光合作用被抑制的条件下,果皮是通过提高酶活力来增强库强度,从而使其在与汁囊竞争中获得更多的光合产物,造成汁囊含糖量下降.  相似文献   

14.
An acid α-galactosidase from the seeds of the jack fruit seed (Artocarpus integrifolia) has been purified to homogeneity by affinity chromatography on a matrix formed by cross-linking the soluble α-galactose-bearing guar seed galactomannan. The 35kDa enzyme was a homotetramer of 9.5kDa subunits. Its carbohydrate part (5.5%) was composed of galactose and arabinose. TheK m withp-nitrophenyl α-D-galactoside as substrate was 0.35 mM. TheK i values indicated inhibition by galactose, 1-O-methyl α-galactose and melibiose in the decreasing order. Among α-galactosides, the enzyme liberated galactose from melibiose, but not from raffinose or stachyose at its pH optimum (5.2). The guar seed galactomannan was however efficiently degalactosidated; limited enzyme treatment abolished the precipitability of the polysaccharide by the α-galactose-specific jack fruit seed lectin, and complete hydrolysis yielded insoluble polysaccharide. Though similar in sugar specificity and subunit assembly, α-galactosidase and the lectin coexisting in the jack fruit seed gave no indication of immunological identity.  相似文献   

15.
Sucrose and reducing sugar concentrations in petals of cut carnation flowers, whose life was prolonged up to 7 days by bathing stalks in sucrose solutions, were respectively 3-fold and 2-fold higher than those bathed in water. Reducing sugar concentrations were about 7-fold higher than sucrose concentrations. A study of invertase and sucrose synthase activities in flower petals of carnation and four other species of flowers revealed that both enzymes may be involved in hydrolysis of translocated sucrose. Invertase activity, while being up to 20-fold higher than sucrose synthase activity in some species was approximately comparable in others. More detailed studies on invertase from petals of 3 flower species demonstrated the presence of only the acid form of the enzyme with a Km value for sucrose of about 2.5 mM.  相似文献   

16.
This is the first report describing the purification and enzymatic properties of a native invertase (β-D-fructosidase) in Thermotogales. The invertase of the hydrogen-producing thermophilic bacterium Thermotoga neapolitana DSM 4359 (hereby named Tni) was a monomer of about 47 kDa having an amino acid sequence quite different from other invertases studied up to now. Its properties and substrates specificity let us classify this protein as a solute-binding protein with invertase activity. Tni was specific for the fructose moiety and the enzyme released fructose from sucrose and raffinose and the fructose polymer inulin was hydrolyzed in an endo-type fashion. Tni had an optimum temperature of 85°C at pH 6.0. At temperatures of 80–85°C, the enzyme retained at least 50% of its initial activity during a 6 h preincubation period. Tni had a K m and k cat /K m values (at 85°C and pH 6.0) of about 14 mM and 5.2 × 108 M−1 s−1, respectively. Dedicated to the memory of Prof. R. A. Nicolaus, founder of the Institute (1968).  相似文献   

17.
The Transport of Sugars in Developing Fruits of Satsuma Mandarin   总被引:1,自引:0,他引:1  
Transport of sugars to the juice sacs of developing satsumamandarin (Citrus unshui Marc) has been studied in attached fruitsand in isolated fruit pieces. 14CO2 fed to the leaves resultedin [14C]sugar accumulation in the juice sacs, mainly as [14C]sucrose.Uptake of sucrose and glucose by the excised fruit pieces proceededlinearly with time. Sucrose uptake was linearly related to sucroseconcentration over the range 25–300 mM, with no indicationof saturation. This uptake was insensitive to pH (5, 7 or 9),Ca2+(3 mM), PCMBS (2.5 mM), DNP (1 mM) or vanadate (0.1 mM)but was slightly reduced by erythrosin (21 % by 0–1 mM;27 % by 1 mM). No competitive effect of glucose (up to 100 mM)was detectable on sucrose uptake from 100 mM solution. Mostof the [14C]sucrose uptake observed was reversible, althoughconsiderable hydrolysis and metabolic conversion were evidenced.A vanadate-sensitive ATPase was demonstrated by EM localizationon the plasma membrane of the juice sac cells. These resultsare interpreted in relation to the accumulation of assimilatesby the developing fruit. Transport: sugar, satsuma mandarin, juice sacs  相似文献   

18.
Levels of soluble and bound invertases and amylases were studied in relation to the changes in the free sugars and the accumulation of starch in the developing sorghum [Sorghum bicolor (L.) Moench, cv. spv. 351] caryopsis and its associated bractspedicel. Besides sucrose, glucose and fructose as the principal sugars, small amounts of sugars of the raffinose series were detected in the developing caryopsis. Through out the period of caryopsis development, the amount of reducing sugars was higher than that of sucrose. With the advancement in the development of the caryopsis, the contents and levels of sucrose rose with a concomitant fall in the activity of soluble acid (pH 4.8) invertase (EC 3.2.1.26) in the endosperm. In the pericarp-aleurone layer, the activity of soluble acid invertase predominated over soluble neutral (pH 7.5) invertase (EC 3.2.1.27). The activity of bound acid invertase declined with the ageing of the caryopsis. In bracts-pedicel, the activity of bound invertase and the levels of reducing sugars peaked around 18 days post anthesis. In these organs, the level of starch gradually decreased concomitantly with an increase in its level in the developing caryopsis. Amylases (EC 3.2.1.1 and 3.2.1.2) are distributed in the endosperm as well as in the pericarp-aleurone layer. On culturing detached ears in [U-14C]-sucrose solution for 6 h in the dark at 25°C, 80–90% of the 14C of extracted major sugars (i.e. sucrose + glucose + fructose) of the caryopsis appeared in sucrose alone. In comparison with the effects of glucose or fructose, transport into the caryopsis of 14C from [U-14C]-sucrose supplied to detached ears was promoted by the addition to the radiolabelled sucrose solution of 1% unlabelled sucrose. Addition to the [U-14C]-sucrose solution fed to the detached ears of 20 mM NaN3 or HgCl2 or galactose, lowered the amount of 14C in the free sugars and starch of the earyopsis.  相似文献   

19.
J. Edelman  A. D. Hanson 《Planta》1971,101(2):122-132
Summary Free space invertase activities were determined in carrot callus strains CRT1 and CRT2 grown under conditions in which sucrose suppression of chlorophyll synthesis occurred in CRT1 but not CRT2. CRT2 possessed a high free space acid invertase activity (pH optimum 5.0 Km for sucrose 3.1×10-3M) while CRT1 lacked this enzyme. [U-14C] sucrose introduced into the free space of calluses was rapidly inverted by CRT2, but not by CRT1.Despite their different invertase levels, CRT1 and CRT2 showed similar sucrose uptake rates and took up [U-14C-glucosyl] sucrose and [5-T-glucosyl] sucrose from external bathing media essentially without prior inversion.It is concluded that acid invertase in callus tissue relieves the suppression of chlorophyll synthesis caused by sucrose in the free space. The invertase may in some circumstances hydrolyse sucrose before uptake, but is not an essential part of the sucrose uptake mechanism in carrot tissue cultures.  相似文献   

20.
Activities of acid and alkaline invertases and sucrose synthase were determined in roots and nodules of lentil at various stages of development. Alkaline invertase and sucrose synthase were both involved in sucrose metabolism in the nodule cytosol, but there was only a small amount of acid invertase present. Activity of sucrose metabolizing enzymes in roots was significantly less than that observed in the nodules. Amongst sugars, sucrose was found to be the main component in the host cytosol. Lentil neutral invertase (LNI) was partially purified from nodules at 50 days after sowing (DAS). Two forms of invertase were identified, i.e., a major form of 71 kDa which was taken for enzyme characterization and a minor form of 270 kDa which was not used for further studies. The purified enzyme exhibited typical hyperbolic saturation kinetics for sucrose hydrolysis. It had a Km of 11.0 to 14.0 mM for sucrose depending upon the temperature, a pH optimum of 6.8 and an optimum temperature of 40 °C. Compared with raffinose and stachyose, sucrose was better substrate for LNI. The enzyme showed no significant hydrolysis of maltose and p-nitrophenyl--D-glucopyranoside, showing its true -fructosidase nature. LNI is completely inhibited by HgCl2, MnCl2 and iodoacetamide but not by CaCl2, MgCl2 or BaCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号