首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A study was conducted to determine if surveys of hydric soils could be used as a historic baseline to estimate wetland losses. Soils were digitized from county soil surveys and wetlands were digitized from National Wetlands Inventory (NWI) maps for two adjacent coastal counties in North Carolina. The two counties were located on the lower Atlantic Coastal Plain and have extensive areas of hydric soils, as much as 96% of the land surface area. Using hydric soils from soil surveys and wetlands from NWI maps, wetland losses since settlement were calculated to be 65% for Washington County and 38% for Tyrrell County. The NWI wetlands were compared to a mid-1950s wetlands survey to determine recent wetland losses. A large percentage of the wetland losses occurred between 1950 and 1980 for Washington County compard to Tyrrell County. Wetland losses for both counties occurred primarily on mineral hydric soils and the current wetlands distribution corresponded well with the distribution of organic soils.  相似文献   

2.
The US Fish and Wildlife Service's National Wetlands Inventory Project   总被引:1,自引:0,他引:1  
B. O. Wilen  M. K. Bates 《Plant Ecology》1995,118(1-2):153-169
In 1974, the US Fish and Wildlife Service directed its Office of Biological Services to design and conduct an inventory of the Nation's wetlands. The mandate was to develop and disseminate a technically sound, comprehensive data base concerning the characteristics and extent of the Nation's wetlands. The purpose of this data base is to foster wise use of the Nation's wetlands and to expedite decisions that may affect this important resource. To accomplish this, state-of-the-art principles and methodologies pertaining to all aspects of wetland inventory were assimilated and developed by the newly formed project. By 1979, when the National Wetlands Inventory (NWI) Project became operational, it was clear that two very different kinds of information were needed. First, detailed wetland maps were needed for site-specific decisions. Second, national statistics developed through statistical sampling on the current status and trends of wetlands were needed in order to provide information to support the development or alteration of Federal programs and policies. The NWI has produced wetland maps (scale=1:24 000) for 74% of the conterminous United States. It has also produced wetland maps (scale=1:63 360) for 24% of Alaska. Nearly 9000 of these wetland maps, representing 16.7% of the continental United States, have been computerized (digitized). In addition to maps, the NWI has produced other valuable wetland products. These include a statistically-based report on the status and trends of wetlands that details gains and losses in United States wetlands that have occurred from the mid-1970's to the mid-1980's. Other wetland products include a list of wetland (hydric) soils, a national list of wetland plant species, wetland reports for certain individual States such as New Jersey and Florida, and a wetland values data base.  相似文献   

3.
The economic and ecological importance of wetlands is well documented, but there are few studies that have assessed wetland condition and extent for the United States. Many states, including Kentucky, have had no statewide field evaluation of wetlands of any kind. The National Wetland Inventory (NWI) is the largest database for mapped wetlands in the United States and the most comprehensive source of wetland information for Kentucky, but its value for determining wetland condition is limited. Therefore, our objectives were to document wetland extent and condition and assess the agreement between the NWI and field-based wetland characteristics in Kentucky. We conducted field and remote-sensing based assessments of 352 wetlands across the state. NWI-mapped and field-assessed wetlands had similar large-scale patterns; however, for individual wetlands, classification often disagreed. Based on our wetland assessment method, wetlands appear to be of moderate condition, although we found differences among basins, dominant vegetation types, and landscape positions and much variation as many sites scored very low and high. Our findings support previous work showing that rapid assessments are valuable for determining wetland condition for ambient monitoring and other applications. Also, our results provide the foundation for future status and trends studies and suggest an urgent need to update the NWI in Kentucky and elsewhere. We suggest that the NWI could be improved by using newer technology that increases wetland mapping accuracy and including predictions of wetland condition using the enhanced NWI approach.  相似文献   

4.
It has been hypothesized that wetland restoration policies have favored the restoration of the wettest classes of wetlands on the Des Moines Lobe of the prairie pothole region. To test this hypothesis we compared pre-drainage wetland distributions based on soils data and National Wetland Inventory (NWI) estimates of contemporary wetland distributions on the Des Moines Lobe. Based on the NWI data, the Des Moines Lobe today has only 3–4% of the wetland area that it had prior to the onset of drainage. On the basis of their soils, pre-drainage wetlands were predominantly temporarily flooded to saturated wetlands (84%), with only about 6% of the wetlands with water regimes classified as semi-permanently to permanently flooded. Depending on the interpretation of wetland modifiers on NWI maps, wetlands classified by the NWI as semi-permanent to permanently flooded make up more than 41% of the wetland area while wetlands with temporarily flooded to saturated water regimes account for 45–58% of the Lobe’s wetland area. The water regimes of contemporary wetlands when compared to their historic regimes suggest that many of today’s wetlands have different water regimes than they did prior to the onset of drainage. Because of the regional lowering of the groundwater table, many of today’s wetlands have drier water regimes, but some have wetter water regimes because they receive drainage tile inputs. Our results indicate that restoration has favored the wettest classes of wetlands and that temporarily to saturated wetland classes have not been restored in proportion to their relative abundance in the pre-drainage landscape.  相似文献   

5.
6.
Question: Does management intensity affect the association between non‐native and native species and between non‐native species and soil nutrients in wetlands? Location: MacArthur Agro‐Ecology Research Center, Florida, USA. Methods: We evaluated native and non‐native plant richness and relative frequency in 15 1‐m2 plots in 40 wetlands across two types of pastures, highly managed (fertilized, ditched, planted, heavily grazed by cattle) and semi‐natural (unfertilized, lightly seasonally grazed). Plant biomass was collected in five 0.25‐m2 plots per wetland and sorted to species. Soil cores were collected to analyse soil total nitrogen (N) and phosphorus (P). An information‐theoretic approach was used to compare mixed effects models considering the association of non‐native richness, relative frequency, and biomass with native richness, relative frequency, biomass, C3 grass relative frequency (a dominant native group), N, P and wetland‐type. Results: Non‐native richness was negatively correlated with native richness in semi‐natural wetlands, but there was no evidence of an association between these variables in highly managed wetlands. Non‐native richness increased with increasing soil N in semi‐natural wetlands, but not in the highly managed wetlands. Soil P was positively related to non‐native frequency in semi‐natural wetlands but negatively related in highly managed wetlands. Non‐native frequency and biomass were negatively related to relative frequency of C3 grasses in both management types. Conclusions: Our results indicate that management intensity influences relationships between native and non‐native richness. Management intensity interacts with abiotic or biotic factors, such as soil nutrients and composition, in predicting where non‐native species will most likely need control.  相似文献   

7.
The crowns of trees and shrubs often overtop temporary wetlands in forested regions. By shading pond basins, canopy can dramatically change the conditions experienced by residents such as amphibians. In this study, we estimated the presence of 8 amphibian species across 17 temporary wetlands at the Yale–Myers Forest in northeastern Connecticut, USA. In addition, we quantified the light environment using a grid of hemispherical canopy photographs to calculate Global Site Factor (GSF) within each wetland. Amphibian richness was low in most wetlands, and most wetlands were relatively shaded. Amphibian richness increased in lighter wetlands. This result was not confounded by relationships with wetland size. Most amphibian species tended to be absent from heavily shaded wetlands (‘open canopy specialists’). However, three species were often found in the shadiest wetlands (‘canopy generalists’). Field transplant experiments using one canopy generalist and one open canopy specialist showed that development of the generalist was less affected by wetland light levels compared with performance of the specialist. These findings suggest that canopy may be an important determinant of amphibian diversity patterns across wetlands. Further, conservation strategies dependent on universally applied, inviolate shoreline vegetation buffers may inadvertently contribute to species loss. Because species differ in their sensitivity to changes in canopy, these losses may be predictable.  相似文献   

8.
In the United States, the regulatory approach to wetland protection has a traditional focus on size as a primary criterion, with large wetlands gaining significantly more protection. Small, isolated wetlands have received less protection; however, these wetlands play a significant role in the maintenance of biodiversity of many taxonomic groups, including amphibians. An important question for directing conservation and management efforts for amphibians is whether size is a useful criterion for regulatory decisions. Because hydroperiod has an important influence on amphibian composition in wetlands, I conducted a study to examine the relative influence of wetland size and hydroperiod on amphibian occurrence. I sampled 103 wetlands in southern New Hampshire in 1998 and 1999 using dipnet sampling to document the presence of larval amphibians. Wetlands were placed into one of three hydroperiod categories; short (<4 months), intermediate (4–11 months), or long (permanent) based on field observations of drying pattern. Wetland size was determined from digitized national wetland inventory (NWI) maps (most wetlands) or measured in the field. I examined patterns of amphibian species richness and individual species occurrence using generalized linear models. Wetland size ranged from 0.01 to 3.27 ha. Overall, species richness was significantly influenced by hydroperiod (χ2 = 18.6, p <0.001), but not size (χ2 = 1.4, p = 0.24). Examination within hydroperiod categories revealed several significant relationships with wetland size. Species richness was related to wetland size in wetlands with short and intermediate hydroperiods, but not wetlands with long hydroperiods. Wetland size does not appear to be a useful sole criterion for determining wetland functional value for amphibians; assessments of functions of seasonally inundated wetlands for amphibians would benefit from examination of hydroperiod.  相似文献   

9.
Many wetland-dependent birds are thought to be experiencing significant population declines, although population trend data for this suite of birds are rare and the causes of declines poorly understood. We used a 26-year dataset (1980–2005) of wetland bird abundance and distribution among 196 wetlands in northeastern Illinois (i.e., Chicago and its suburbs) to evaluate population trends and identify underlying ecological causes. We used aerial photography and GIS to quantify wetland habitat structure (i.e., the extent of emergent vegetation) and changes in surrounding land use. We then evaluated how changes in land use affected the structure of wetlands and ultimately wetland bird populations. Of the 12 species analyzed, seven experienced significant declines, three showed non-significant declines, and two experienced significant increases. Population declines could not be attributed to wetland loss because none of our wetlands were destroyed. Concurrent research at these wetlands also suggests that neither low adult survival nor poor reproductive success were responsible for the declines. Increased development within 2 km of wetlands, however, was associated with extreme changes in the structure of wetlands. Wetlands tended either to lose much of their vegetation and become open ponds, or become rank stands of dense vegetation. Both changes made wetlands less suitable for many wetland birds. While “no net loss” legislation may protect wetlands from being filled or drained, development near wetlands appears to be altering hydrology, resulting in habitat degradation and population declines of several wetland-dependent bird species.  相似文献   

10.
11.
Indicator species provide an easy and quick method of evaluating ecosystems. The species comprising the most useful indicators of wetlands should be distributed across a range of water depths and inundation durations, while each species is representative of a specific condition. Hydrophytic vegetation is commonly used to determine the existence and type of wetland; however, such indicator systems often depend on assigning species qualitatively to discrete categories based on assumptions about their distribution along a gradient of conditions. The current study proposes a wetland indicator system based on the quantitative responses of individual vegetation species to a gradient of water depths and periods of inundation. A long-term database was utilized to determine species responses to hydrological alterations in a series of wetlands. The hydrophytic plant species investigated (n = 29) displayed relatively narrow ranges of mean hydrologic values and were distributed linearly along multiple hydrologic gradients (hydroperiod, average water depth, and maximum water depth) ranging from Amphicarpum muhlenbergianum which was observed at the shallowest water depths and shortest hydroperiod to Pontederia cordata and Ludwigia repens which were characteristic of wetlands with the deepest water and longest hydroperiod. The species distribution and means along the hydrologic gradients tested indicates they are prime candidates for inclusion in a quantitative or continuum indicator system. The historical database utilized for this study provided valuable information for numerous species common to the Tampa Bay region for which little or no ecological information was previously available. The methodology utilized in this paper provides a cost and time effective method for obtaining the vast amounts of information required to refine plant indicator systems using a large number of species.  相似文献   

12.
Aims Forest vegetation variability may be explained by the complex interplay among several spatial structuring factors, including climate and topography. We modelled the spatial variability of forest vegetation assemblages and significant environmental variables along a complex environmental gradient or coenocline to produce a detailed cartographic database portraying the distribution of forests along it.Methods We combined an analysis of ordination coenoclines with kriging over 772 field data plots from the third Spanish National Forest Inventory in an Atlantic–Mediterranean transitional area (northern Spain).Important findings The best fitted empirical semivariogram revealed a strong spatial structure of forest species composition along the complex environmental gradient considered (the climatic–topographic gradient from north to south). The steady and gradual increase of semivariance with a marked lag distance indicates a gradual turnover of forest assemblages according to the climatic–topographic variations (regional or local). Two changes in the slope of the semivariogram suggest the existence of two different scales of spatial variation. The interpolation map by Kriging of forest vegetation assemblages along the main coenocline shows a clear spatial distribution pattern of trees and shrubs in accordance with the spatial variation of significant environmental variables. We concluded that the multivariate geostatistical approach is a suitable technique for spatial analysis of forest systems employing data from national forest inventories based on a regular network of field plots. The development of an assortment of maps describing changes in vegetation assemblages and variation in environmental variables is expected to be a suitable tool for an integrated forest management and planning.  相似文献   

13.
How closely the vegetation of restored wetlands resembles that of comparable natural wetlands is a function of the probability of propagules of wetland species reaching reflooded wetlands and how similar environmental conditions in the restored wetland are those in the natural wetlands. Three years after reflooding, we examined the vegetation composition, water level fluctuations, soil organic carbon content, and soil bulk density as well as surface water pH, alkalinity, conductivity, and calcium and magnesium concentrations of 10 restored and 10 natural wetlands. In the restored wetlands, more species of submersed aquatics colonized than were found in natural wetlands, and they rapidly spread to form extensive beds that were larger than those found in natural wetlands. Emergent and wet meadow species in restored wetlands, however, were found in only sparse stands as were a variety of annuals. The vegetation of natural wetlands was predominantly large stands of emergent species. Fluctuations in water storage volume and basin surface area were similar for both restored and natural wetlands. The surface water in restored wetlands had higher pH and lower alkalinity, conductivity, and calcium and magnesium concentrations than that in natural wetlands. Soils of restored wetlands have a lower organic carbon content and higher bulk density than do those of natural wetlands. Our results suggest that for submersed aquatics, dispersal of propagules to restored wetlands is rapid and environmental conditions in restored wetlands are very suitable for their establishment. For other guilds of wetland species, e.g., sedges and other wet meadow species, dispersal to restored wetlands is likely much slower and may pose a serious problem for the re-establishment of these species in restored wetlands. Even if dispersal is not limiting, low surface organic carbon and high bulk density may prevent the establishment of these species in restored wetlands.  相似文献   

14.
Six spectrally and ecologically distinct montane meadow community types were identified and mapped within Grand Teton National Park by analysis of Indian IRS-1B LISS-II imagery. A distinct to-xeric-hydric gradient among the meadow types was predicted by analysis of the satellite data. Thirty sites (five replicates for each of six meadow typ were selected for intensive field sampling. At each of the 30 sites, meadow vegetation was sampled in 20 m by 20 m square plots for canopy cover of all species. Using wetland indexes (on a scale of 1–5, where obligate wetland species = 1, facultative land = 2, facultative = 3, facultative upland = 4 and upland species = 5), average wetland values were calculated and ranged from 1.88 for A-type meadows and 2.86 for B meadows to 4.40, 4.49, 4.74, and 4.43 for C, D, E and F meadows, respectively. Because average wetland values of A and B meadows were < 3.00, they were determined to be indicative of wetlands. Eight out of ten obligate wetland plants had their greatest cover on A meadows (the wettest of the gradient) and had significant cover differe among meadow types using the non-parametric Kruskal-Wallis test. Average wetland values and plant species cover were used, in conjunction with remotely sensed data, to identify as wetlands 1,258 hectares of A meadows and 1,711 hectares of B meadows in Grand Teton National Park.  相似文献   

15.
The composition, diversity, and structure of vascular plants are important indicators of forest health. Changes in species diversity, structural diversity, and the abundance of non-native species are common national concerns, and are part of the international criteria for assessing sustainability of forestry practices. The vegetation indicator for the national Forest Inventory and Analysis (FIA) Program, USA, was designed to assess these issues. The objectives of this study were to: (1) assess the repeatability and practicality of the vegetation field techniques using independent measurements of 48 plots by two botanists and (2) examine the interpretation of forest health indicators from 2 years of data collected on 110 plots in the state of Oregon. Plant identification was similar for both botanists, with 80% of all plant species on the plot being identified to species, and another 14% identified to the genus level; the greatest problems were in dry forest types where plants had senesced by July. Agreement among botanists for species identification was 71% at the subplot level and 67% at the quadrat level, with many differences caused by plants being identified as closely related species, usually in the same genus. As a result, agreement between botanists on species richness and the abundance of non-native species was high, with correlation coefficients of 0.94 and 0.98, respectively. Quadrats detected only 20% of the species found from the subplot search, on average. Although botanists differed in their speed, 22% of subplot searches were completed within 15 min and 71% were completed within 30 min. Dramatic differences in patterns of plant diversity were found across the ecological regions of Oregon, with high plot richness and the highest species turnover among plots found in the Blue Mountains. Abundance of non-native species varied from 15% of the species in juniper (Juniperus occidentalis Hook.) stands to 1% in high-elevation conifer stands. The proportion of cover made up of non-native species was highest in juniper and Ponderosa pine (Pinus ponderosa P. & C. Lawson) forest types. Numbers of non-native species on a plot increased with the number of native species, but the relationship was weak (R2 = 0.09). Results suggest that the vegetation indicator provides a robust and valuable tool for assessing forest health.  相似文献   

16.
Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the Mississippi Alluvial Valley. The PRW-Ag layer could assist land managers in identifying sites that may qualify for enrollment in conservation programs, where planners can coordinate restoration efforts, or where decision makers can target resources to optimize the services provided across a watershed or multiple watersheds.  相似文献   

17.
A monitoring program was established on San Antonio Terrace at Vandenberg Air Force Base to compare vegetation development at two created wetland sites and six nearby natural wetlands. The reference wetlands were chosen to represent a range of habitats in dune swale wetlands on the Terrace. Vegetation in the reference wetland plant communities varies from low-growing herbaceous marsh species with open canopies to closed canopies dominated by shrub or tree species. Transects and plots for long-term vegetation monitoring were established in all the wetlands, stratified by plant communities in the reference wetlands and by geomorphic location in the newly created wetlands. Quantitative vegetation and environmental data were collected at all the sites; measures included species distributions, species cover, and topographical elevations. Over the first three years of monitoring, variations in groundwater depth at different geomorphic locations in the created wetlands resulted in a variety of physical conditions for plant growth. In the first year, more than 100 plant species were observed, the majority being natives. During the next two years, species richness at the created wetland sites remained relatively stable and was higher than at the reference sites. Statistical comparisons of vegetation parameters by analysis of variance and hierarchical clustering exhibited patterns of increasing similarity between the created and reference wetlands. Long-term monitoring will be continued to track the progress of vegetation at the created sites, and to assess their development relative to the reference wetlands.  相似文献   

18.
红皮云杉林(Picea koraiensis Forest Alliance)是以红皮云杉为群落共优势种的森林植被类型, 具有结构复杂及物种多样性高等特点。在遵从《中国植被志》研编规范的基础上, 提出了红皮云杉林新的分类系统, 包括5个群丛组8个群丛, 分别归属于常绿针叶林、落叶与常绿针叶混交林和针叶与阔叶混交林3个植被型。群丛组分类主要基于群落层片分化, 以及乔木层的共优势种和特征种的差异, 并以常绿针叶树层片重要值的66%为阈值划分常绿针叶林和针叶与阔叶混交林。在群丛分类中, 通过双向指示种分析筛选特征种, 综合考虑群落生境和群落演替阶段等因素确定分类方案。该分类方案是《中国植被志》研编规范的一个应用示例, 对植被分类工作的借鉴意义表现在4个方面。(1) 作为植被分类的重要凭证, 样方数据质量控制是植被分类工作的重要环节; 其中, 物种的准确鉴定对确保植被分类方案的合理性至关重要。(2) 对于乔木层物种组成丰富、优势种不明显的群落, 群落层片分化和特征种是植被类型划分的重要依据。(3) 以特定物种组合为共建种所组成的多个植被类型可归属为不同的植被型。(4) 森林采伐等人类活动可能对植被与环境的关系形成干扰。因此, 在植被分类中应考虑群落的干扰历史和演替阶段等因素。  相似文献   

19.
Natural disturbances, such as fire, windstorms and insect outbreaks, are important drivers of biodiversity in forest ecosystems, but at the same time cause large economic losses. Among the natural disturbances in Europe, windstorms cause the highest economic loss. After such storms, damaged forest stands are commonly salvage logged to restore economic value. However, such interventions could affect species assemblages of various taxonomic groups, including breeding birds. Despite these potential effects, investigations of the impacts of post-storm logging are largely lacking. We thus investigated assemblages of breeding birds in 21 logged and 21 unlogged windstorm-disturbed forest plots and 18 undisturbed, control forest plots using fixed-radius point-stop counts three, five and seven years after a windstorm within the Bavarian Forest National Park as part of the European Long-Term Ecosystem Research Network. We recorded 2100 bird individuals of 55 bird species. Bird assemblages were predominantly altered by the consequences of the windstorm and affected only to a minor degree by subsequent logging of storm-felled trees. Nevertheless, bird species richness was significantly reduced by post-storm logging within the first season. In general, the windstorm led to a shift in bird assemblage composition from typical forest species towards open- and shrub-land species. Assemblages of logged and unlogged disturbed plots consisted mainly of long-distance migrants and ground-foraging bird species, whereas assemblages of undisturbed control plots consisted of resident species that forage within vegetation. Both unlogged and logged storm-felled coniferous forest stands were inhabited by endangered or declining bird species, such as Water Pipit (Anthus spinoletta) on logged plots and Eurasian Redstart (Phoenicurus phoenicurus) on unlogged plots. Indicator species analyses suggested that species of unlogged storm disturbed plots depended on storm-created legacies, such as pits and snags, for foraging and nesting. Hence, we recommend reducing post-storm logging of these legacies to support species restricted to unlogged disturbed forest. To increase the diversity of breeding birds on the landscape scale, diverse logged and unlogged post-disturbance stands should be provided, which could be gained by a partial benign neglect strategy of storm disturbed forest stands.  相似文献   

20.
To avoid submergence during sea‐level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea‐level rise may change. To compare how well mangroves and salt marshes accommodate sea‐level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table‐marker horizon system. Comparison of land movement with relative sea‐level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub‐root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small‐scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat‐forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea‐level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号