首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excitability of thenar motoneurons (reflected by F-wave persistence and amplitude) and thenar muscle force were measured during a stimulation protocol (90 s of 18-Hz supramaximal electrical stimulation of the median nerve) designed to induce muscle fatigue (force decline). Data from muscles (n = 15) paralyzed by chronic cervical spinal cord injury were compared with those obtained from control muscles (n = 6). The persistence of F waves in both paralyzed and control muscles increased from approximately 60 to approximately 76% during the first 10 s of the fatigue protocol. Persistence then declined progressively to approximately 33% at 90 s. These changes in F-wave persistence suggest that similar reductions occur in the excitability of the motoneurons to paralyzed and control motor units after sustained antidromic activation. Despite this, significantly larger force declines occurred in the paralyzed muscles of spinal cord-injured subjects (approximately 60%) than in the muscles of control subjects (approximately 15%). These data suggest that the decreases in motoneuron excitability for both the spinal cord-injured and control subjects are a result of activity-dependent changes in motoneuron properties that are independent of fatigue-related processes in the muscles.  相似文献   

2.
Potentials of motoneurons of the lower segments of the spinal cord were recorded with the aid of intracellular microelectrodes in experiments on cats with induced tetanus produced by injection of tetanus toxin (1500–2000 mouse LD50) into the extensor muscles of the left shin. Neither afferent volleys of impulses in cutaneous and muscle nerves, nor antidromic volleys in the corresponding ventral roots, produced IPSPs in motoneurons of the extremity into which toxin was injected. The form both of antidromic peak potentials and of monosynaptic EPSPs in motoneurons in which IPSPs were blocked by tetanus toxin did not differ from the form of corresponding potentials of motoneurons in normal cats. The values of threshold depolarization for peak discharges during synaptic and direct stimulation were equal in tetanus and control motoneurons. Resistance and time constant values of the membrane in "tetanus" motoneurons did not differ from the corresponding values for "control" motoneurons.N. I. Pirogov Second Medical Institute, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 25–34, July–August, 1969.  相似文献   

3.
Postsynaptic potentials evoked by stimulation of the motor cortex or pyramids before and after acute pyramidotomy were investigated in the lumbar motoneurons of monkeys. In response to activation of fibers of the pyramidal tract monosynaptic EPSPs predominated in motoneurons innervating the distal muscles of the hind limbs. Monosynaptic EPSPs in the motoneurons of the distal muscles had a significantly higher amplitude and could be evoked by weaker stimuli than EPSPs in the motoneurons of the proximal muscles. Cortico-motoneuronal EPSPs in the motoneurons of the distal muscles had a less marked frequency potentiation than EPSPs with monosynaptic segmental delay in the motoneurons of the proximal muscles. Cortico-extrapyramidal synaptic responses appeared in the pyramidotomized monkeys during intensive repetitive stimulation of the motor cortex in motoneurons of both distal and proximal muscles. These effects, transmitted by descending projections of the brain stem, may be responsible for the partial preservation of cortical motor control after pyramidotomy.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 587–596, November–December, 1972.  相似文献   

4.
In unloading condition the degree of activation of the central stepping program was investigated during passive leg movements in healthy subjects, as well as the excitability of spinal motoneurons during passive and voluntary stepping movement. Passive stepping movements with characteristics maximally approximated to those during voluntary stepping were accomplished by experimenter. The comparison of the muscle activity bursts during voluntary and imposed movements was made. In addition to that the influence of artificially created loading onto the foot to the leg movement characteristics was analyzed. Spinal motoneuron excitability was estimated by means of evaluation of amplitude modulation of the soleus H-reflex. The changes of H-reflexes under the fixation of knee or hip joints were also studied. In majority of subjects the passive movements were accompanied by bursts of EMG activity of hip muscles (and sometimes of knee muscles), which timing during step cycle was coincided with burst timing of voluntary step cycle. In many cases the bursts of EMG activity during passive movements exceeded activity in homonymous muscles during voluntary stepping. The foot loading imitation exerted essential influence on distal parts of moving extremity during voluntary as well passive movements, that was expressed in the appearance of movements in the ankle joint and accompanied by emergence and increasing of phasic EMG activity of shank muscles. The excitability of motoneurons during passive movements was greater then during voluntary ones. The changes and modulation of H-reflex throughout the step cycle without restriction of joint mobility and during exclusion of hip joint mobility were similar. The knee joint fixation exerted the greater influence. It is supposed that imposed movements activate the same mechanisms of rhythm generation as a supraspinal commands during voluntary movements. In the conditions of passive movements the presynaptic inhibition depend on afferent influences from moving leg in the most degree then on central commands. It seems that afferent inputs from pressure receptors of foot in the condition of "air-stepping" actively interact with central program of stepping and, irrespective of type of the performing movements (voluntary or passive), form the final pattern activity.  相似文献   

5.
Recording of the H-reflex was used to study the changes in the reflex excitability of soleus motoneurons during dorsal and plantar flexions of the ipsilateral and contralateral feet performed with different strengths by 15 healthy subjects. The dorsiflexion of the ipsilateral foot was accompanied by the “classic” reciprocal inhibition of the soleus motoneurons, the degree of the inhibition being directly proportional to the strength of the contraction of pretibial muscles and depending on the presence of foot support. The plantar flexion of the ipsilateral foot was accompanied by changes in reflex excitability, which were inversely proportional to the strength of the flexion. This was apparently related to the activation of a mechanism protecting the muscle against excessive contraction. The dorsal and plantar flexions of the contralateral foot were accompanied by similar changes in the reflex excitability of soleus motoneurons, namely, an increase in the case of weak contraction and a decrease in the case of strong contraction. However, the increase in reflex excitability during contralateral dorsiflexion was smaller and its decrease began at a weaker contraction than in the case of contralateral plantar flexion. The changes in the reflex excitability of soleus motoneurons during movements of the contralateral foot, which were also strength-dependent, confirmed the presence of cross-projections that are likely to be part of the generator of the central pattern of lower limb movement coordination.  相似文献   

6.
The reflex excitability of the soleus spinal motoneurons was assessed in healthy subjects performing different types of motor tasks: voluntary contraction of the flexor (dorsal flexion) and extensor (plantar flexion) muscles of the foot. The effect of the contraction strength of these muscles was also evaluated. During dorsal flexion of the ipsi-and contralateral feet, changes in the reflex ecitability of the soleus motoneurons were unidirectional: the excitability decreased. The decrease in the reflex excitability was more profound during dorsal flexion with the maximum strength than with the half-maximum strength. During the plantar flexion of the ipsi-and contralateral feet, the excitability of the soleus motoneurons changed in opposite directions: in some subjects it increased, while in the others it decreased. The reflex excitability of the soleus motoneurons changed to a greater extent during dorsal or plantar flexion of the ipsilateral foot. In the case of plantar flexion, the soleus motor center is possibly affected by a broader spectrum of influences than in the case of dorsal flexion, which can explain the variations in the reflex excitability changes during plantar flexion.  相似文献   

7.
The degree of activation of the central stepping program during passive leg movement was studied in healthy subjects under unloading conditions; the excitability of spinal motoneurons was studied during passive and voluntary stepping movements. Passive stepping movements with characteristics maximally close to those during voluntary stepping were accomplished by the experimenter. The bursts of muscular activity during voluntary and imposed stepping movements were compared. In addition, the influence on the leg movement of artificially created loading onto the foot was studied. The excitability of spinal motoneurons was estimated by the amplitude of modulation of the m. soleus H reflex. Changes in the H reflex (Hoffmann’s reflex) after fixation of the knee and hip joints were also studied. In most subjects, passive movements were accompanied by bursts of electromyographic (EMG) activity in the hip muscles (sometimes in shank muscles); the timing of the EMG burst during the step cycle coincided with the burst’s timing during voluntary stepping. In many cases, the bursts in EMG activity exceeded the activity of homonymous muscles during voluntary stepping. Simulation of foot loading influenced significantly the distal part of the moving extremity during both voluntary and passive movements, which was expressed in the appearance of movements in the ankle joint and an increase in the phasic EMG activity of the shank muscles. The excitability of motoneurons during passive movements was higher than during voluntary movements. Changes and modulation of the H reflex throughout the step cycle were similar without restriction of joint mobility and without hip joint mobility. Fixation of the knee joint was of great importance. It is supposed that imposed movements activate the same mechanisms of rhythm generation as supraspinal commands during voluntary movements. During passive movements, presynaptic inhibition depends mostly on the afferent influences from the moving leg rather than on the central commands. Under the conditions of “air-stepping,” the afferent influences from the foot pressure receptors are likely to interact actively with the central program of stepping and to determine the final activity pattern irrespective of the movement type (voluntary or passive).  相似文献   

8.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

9.
Studies on immobilized decerebrate (at intracollicular level) cats in which the scratch generator had been set up following bicuculline application to the upper cervical segments of the spinal cord, showed that the state of the segmental apparatus of the lumbosacral section of the spinal cord differs substantially from that seen in the spinal animal. Direct excitability of motoneurons of the "aiming" and "scratching" muscles rises, while recurrent and reciprocal Ia inhibition of motoneurons intensifies and the influence of Ib afferents on motoneurons declines. Afferents of the flexor reflex exert a primarily inhibitory influence on motoneurons of the "aiming" muscles. This influence becomes predominantly excitatory following spinalization, while the inhibitory effects of these afferents on motoneurons of the "scratch" muscles declines. The functional significance of the changes discovered in generation of scratch routine is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 244–250, March–April, 1987.  相似文献   

10.
Responses of motoneurons and interneurons of the cervical enlargement of the cat spinal cord were studied by a microelectrode technique during selective stimulation of propriospinal fibers of the dorsolateral tract of the lateral white column. The long descending and ascending pathways were blocked by preliminary (10–16 days earlier) hemisection of the spinal cord cranially and caudally to the segments studied. Stimulation of the dorsolateral tract at a distance of 15–25 mm from the site of recording evoked complex postsynaptic potentials consisting of several successive waves in the motoneurons. The character of the PSPs was not clearly linked with the function of the motoneurons. By their latent periods the components of the PSPs could be placed in three groups. The "primary" components were reproduced in response to stimulation at 50–100/sec whereas the "secondary" and "tertiary" components were weakened or blocked. It is postulated that the "primary" components are evoked through monosynaptic connections between propriospinal fibers of the dorsolateral tract and motoneurons of the forelimb muscles, while the late components are evoked through polysynaptic pathways, including segmental interneurons. Many of these interneurons, located in the ventral horn and intermediate zone, were strongly excited during stimulation of the dorsolateral tract.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 61–69, January–February, 1973.  相似文献   

11.
Effects induced in motoneurons and interneurons of the cervical enlargements of the cat spinal cord by stimulation of the lateral and ventral funiculi at the lower thoracic level were studied under conditions producing degeneration of fibers of descending brain systems. Stimulation of this sort evoked PSPs (mainly of mixed character) in 57 of 90 motoneurons tested. In nine motoneurons the primary response consisted of monosynaptic EPSPs evoked by activity of fibers of the lateral funiculus, and in the rest it consisted of polysyanptic (at least disynaptic) EPSPs and IPSPs. Polysynaptic effects arising in the neuron in response to stimulation of the lateral and ventral funiculi usually differed only quantitatively. The intensity of excitatory synaptic action on motoneurons of the proximal muscle (especially thoracid) was much greater than that on motoneurons of distal muscles. Nearly all motoneurons with no synaptic action belonged to the latter group. Stimulation of the lateral and ventral funculi facilitated synaptic action induced in motoneurons by stimulation of high-threshold segmental afferents and led to excitation of interneurons located in the vectral quadrant, and had no effect on interneurons in the dorsal regions of gray matter. These effects are regarded mainly as the result of excitation of long ascending propriospinal pathways in the cervical parts of the cord; it is also postulated that some of them are evoked by the arrival of activity along collaterals of descending propiospinal pathways to the neurons in this region.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 339–347, July–August, 1979.  相似文献   

12.
Intracellular recordings were made of synaptic responses of 93 motoneurons in the cervical region of the cat spinal cord to stimulation of the medial longitudinal bundle, the brain-stem reticular formation, the lateral vestibular nucleus of Deiters, and the red nucleus. In response to stimulation of the medial longitudinal bundle and the vestibular nucleus responses in the motoneurons of the distal groups of muscles of the forelimb were predominantly excitatory, whereas in motoneurons of the proximal extensor muscles they were predominantly inhibitory. During stimulation of the red nucleus, excitatory and inhibitory responses were recorded in almost equal numbers of cells regardless of their functional class. Monosynaptic EPSPs appeared in one-fifth of motoneurons in response to stimulation of the medial longitudinal bundle and, in a few cases, to stimulation of the vestibular and red nuclei. Otherwise, during stimulation of these structures polysynaptic responses were recorded in the motoneurons. In 62% of cases postsynaptic potentials arising in response to stimulation of the various suprasegmental structures tested were identical in direction in the same motoneurons. A mutually facilitatory effect was observed during stimulation of different suprasegmental inputs. The results are evidence that interaction between influences of the structures tested takes place largely at the level of spinal interneurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 391–399, July–August, 1978.  相似文献   

13.
We studied the antidromic and synaptic potentials evoked from 32 digastric-muscle motoneurons by stimulation of the motor nerve to this muscle, different branches of the trigeminal nerve, and the mesencephalic trigeminal nucleus. Antidromic potentials appeared after 1.1 msec and lasted about 2.0 msec. Stimulation of the infraorbital, lingual, and inferior alveolar nerves led to development of excitatory postsynaptic potentials (EPSP) and action potentials in the motoneurons. The antidromically and synaptically evoked action potentials of the digastric-nerve motoneurons were characterized by weak after-effects. We were able to record EPSP and action potentials in two of the motoneurons investigated in response to stimulation of the mesencephalic trigeminal nucleus, the latent period being 1.3 msec. This indicates the existence of a polysynaptic connection between the mesencephalic-nucleus neurons and the digastric-muscle motoneurons. Eight digastric-muscle motoneurons exhibited inhibitory postsynaptic potentials (IPSP), which were evoked by activation of the afferent fibers of the antagonistic muscle (m. masseter). The data obtained indicate the presence of reciprocal relationships between the motoneurons of the antagonistic muscles that participate in the act of mastication.A. A. Bogomol'ts Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 52–57, January–February, 1971.  相似文献   

14.
In motor control studies, the F-wave (a recurrent discharge evoked by an axonal antidromic volley) widely used for obtaining information on motoneuron pool behavior. However, such F-wave using is a matter of discussion and still has been not validated experimentally. The aim of the present study was investigation of F-wave properties of single firing motor units (MUs) in healthy humans, the properties, which could give evidence for F-wave origin in motoneuron soma and, therefore, could be used for estimation of a relation between MU firing and motoneuron firing behavior. In total, 91 MUs in five muscles of six healthy subjects, during gentle voluntary contractions, were studied. Peri-stimulus time histograms of single MUs were plotted. None of them revealed statistically significant increasing in MU firing probability at the F-wave latency. Analysis of relationships between characteristics of motoneuron firing behavior (mean firing frequency and target interspike interval duration) and properties of F-waves showed their independence. At the same time, it was found that F-waves were recorded in MUs, whose axons possessed the marked supernormal period in excitability recovery cycle after a discharge. Thus, the present results are in contrast to that which should be expected if the F-wave originated in the motoneuronal soma and could provide evidence for motoneuron firing behavior.  相似文献   

15.
Membrane potentials and action potentials evoked by antidromic and direct stimulation were investigated in motoneurons of the trigeminal nucleus in rats innervating the masseter muscle. This motor nucleus was shown to contain cell populations with high and low membrane potentials. The responses of cells of the first group had shorter latent periods of their antidromic action potentials, a longer spike duration, and a lower amplitude and shorter duration of after-hyperpolarization than responses of cells of the second group, and the input resistance of their membrane also is lower. The bimodal character of distribution of electrophysiological parameters of motoneurons in the trigeminal nucleus indicates that "fast" and "slow" fibers of the masseter muscles may be innervated by different types of nerve cells.N. A. Semashko Moscow Medical Stomatological Institute. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 270–274, May–June, 1981.  相似文献   

16.
Crossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls. Using transcranial magnetic stimulation we elicited motor evoked potentials (MEPs) in the resting first dorsal interosseous, biceps brachii, and tibialis anterior muscles when the contralateral side remained at rest or performed 70% of maximal voluntary contraction (MVC) into index finger abduction, elbow flexion, and ankle dorsiflexion, respectively. By testing MEPs in muscles with motoneurons located at different spinal cord segments we were able to relate the neurological level of injury to be above, at, or below the location of the motoneurons of the muscle tested. We demonstrate that in patients the size of MEPs was increased to a similar extent as in controls in muscles above the injury during 70% of MVC compared to rest. MEPs remained unchanged in muscles at and within 5 segments below the injury during 70% of MVC compared to rest. However, in muscles beyond 5 segments below the injury the size of MEPs increased similar to controls and was aberrantly high, 2-fold above controls, in muscles distant (>15 segments) from the injury. These aberrantly large MEPs were accompanied by larger F-wave amplitudes compared to controls. Thus, our findings support the view that corticospinal degeneration does not spread rostral to the lesion, and highlights the potential of caudal regions distant from an injury to facilitate residual corticospinal output after SCI.  相似文献   

17.
Experimental and clinical material allowed a quantitative assessment of the contribution of the central (cortical) and reflex (proprioceptive) components to the origin of the initial phase of exercise-associated hyperpnea and modulation of this ventilatory response depending on the excitability of central and peripheral chemoreceptors. It was established that, in healthy subjects, the pattern of involuntary stepping movements induced by vibration ("stepping in the air") significantly changes its characteristics during hypercapnic stimulation of the respiratory center. In spinal patients, voluntarily increased ventilation of the lungs induces rhythmic EMG activity in the musculus rectus femoris according to the respiratory rhythm. This phenomenon was explained by the stretch reflexes from the expiratory abdominal muscles, impulses from which might affect the lumbar motoneurons, bypassing the site of lesion. These data clearly demonstrate the real mechanisms of interactions between the regulations of the locomotor and autonomic functions of the body and provide a theoretical basis for the principal possibility of controlling locomotor activity by regulating respiratory movements, which can be used in clinical practice for the rehabilitation of spinal patients.  相似文献   

18.
A two-stage defense response was induced in the freshwater snailPlanorbarius corneus by stimulating the head. It consisted of the shell being rapidly lowered over the head and foot followed by the snail gradually withdrawing into its shell. These movements are performed by contracting the columellar muscle. Motoneurons of the columellar muscle were identified in the cerebral, parietal, and pedal ganglia. Stimulating the lip nerve was found to induce 2-stage excitation in motoneurons (responsible for the 2-stage muscular contraction) in preparations of central nervous system with the columellar muscle attached. The same 2-stage motoneuronal excitation can also occur spontaneously. This implies that defense reaction in the cell is at least partially a "fixed action" underlying a central mechanism or program and triggered by afferent stimuli. Activation of the central mechanism of defense response can also induce depolarization in certain columellar muscle motoneurons. This points to the existence of a feedback between neurons of the central mechanism and motoneurons.Institute of Research on Transmission of Information, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 6, pp. 786–795, November–December, 1990.  相似文献   

19.
The objectives of this study were to establish the neurophysiological properties of the compound muscle action potentials (CMAPs) evoked by transcutaneous magnetic stimulation of the spine (tsMSS) and the effects of tsMSS on the soleus H‐reflex. In semi‐prone seated subjects with trunk semi‐flexed, the epicenter of a figure‐of‐eight magnetic coil was placed at Thoracic 10 with the handle on the midline of the vertebral column. The magnetic stimulator was triggered by monophasic single pulses of 1 ms, and the intensity ranged from 90% to 100% of the stimulator output across subjects. CMAPs were recorded bilaterally from ankle and knee muscles at the interstimulus intervals of 1, 3, 5, 8, and 10 s. The CMAPs evoked were also conditioned by posterior tibial and common peroneal nerve stimulation at a conditioning‐test (C‐T) interval of 50 ms. The soleus H‐reflex was conditioned by tsMSS at the C‐T intervals of 50, 20, ?20, and ?50 ms. The amplitude of the CMAPs was not decreased when evoked at low stimulation frequencies, excitation of group I afferents from mixed peripheral nerves in the leg affected the CMAPs in a non‐somatotopical neural organization pattern, and tsMSS depressed soleus H‐reflex excitability. These CMAPs are likely due to orthodromic excitation of nerve motor fibers and antidromic depolarization of different types of afferents. The latency of these CMAPs may be utilized to establish the spine‐to‐muscle conduction time in central and peripheral nervous system disorders in humans. tsMSS may constitute a non‐invasive modality to decrease spinal reflex hyperexcitability and treat hypertonia in neurological disorders. Bioelectromagnetics 34:200–210, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
This study examined the involvement of spinal mechanisms in the control of coactivation during a sustained contraction of the ankle dorsiflexors at 50% of maximal voluntary contraction. Changes in the surface electromyogram (EMG) of the tibialis anterior and of two antagonist muscles, the soleus and lateral gastrocnemius, were investigated during and after the fatigue task. Concurrently, the compound action potential (M-wave) and the Hoffmann reflex of the soleus and lateral gastrocnemius were recorded. The results showed that the torque of the ankle dorsiflexors and the average EMG of the tibialis anterior during maximal voluntary contraction declined by 40.9 +/- 17.7% (mean +/- SD; P < 0.01) and 37.0 +/- 19.9% (P < 0.01), respectively, at task failure. During the submaximal fatiguing contraction, the average EMG of both the agonist and antagonist muscles increased, leading to a nearly constant ratio at the end of the contraction when normalized to postfatigue values. In contrast to the monotonic increase in average EMG of the antagonist muscles, the excitability of their spinal reflex pathways exhibited a biphasic modulation. The amplitude of the Hoffman reflexes in the soleus and lateral gastrocnemius increased to 147.5 +/- 52.9% (P < 0.05) and 166.7 +/- 74.9% (P < 0.01), respectively, during the first 20% of the contraction and then subsequently declined to 66.3 +/- 44.8 and 74.4 +/- 44.2% of their initial values. In conclusion, the results show that antagonist coactivation did not contribute to task failure. The different changes in voluntary EMG activity and spinal reflex excitability in the antagonist muscles during the fatiguing contraction support the concept that the level of coactivation is controlled by supraspinal rather than spinal mechanisms. The findings indicate, however, that antagonist coactivation cannot simply be mediated by a central descending "common drive" to the motor neuron pools of the agonist-antagonist muscle pairs. Rather, they suggest a more subtle regulation of the drive, possibly through presynaptic mechanisms, to the motoneurons that innervate the antagonist muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号