首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Obtaining oat DH lines is only effective via wide crossing with maize. Seven hundred haploid embryos from 21 single F1 progeny obtained from wide crosses with maize were isolated, divided into four groups according to their size (<0.5 mm, 0.5–0.9 mm, 1.0–1.4 mm, and ≥1.5 mm), and transferred into 190–2 regeneration medium with different growth regulators: 0.5 mg L?1 kinetin (KIN) and 0.5 mg L?1 1-naphthaleneacetic acid (NAA); 1 mg L?1 zeatin (ZEA) and 0.5 mg L?1 NAA; or 1 mg L?1 dicamba (DIC), 1 mg L?1 picloram (PIC), and 0.5 mg L?1 kinetin (KIN). Among all isolated embryos, approximately 46.1% were between 1.0–1.4 mm, while the smallest group of embryos (7.1%) were those <0.5 mm. The ability of haploid embryos to germinate varied depending on oat genotypes and the size of embryos. Haploid embryos <0.5 mm were globular and did not germinate, whereas embryos ≥1.5 mm had clearly visible coleoptiles, radicles, and scutella, and were able to germinate. Germination of oat haploid embryos varied depending on growth regulators in the regeneration medium. Most haploid embryos germinated on medium with 0.5 mg L?1 NAA and 0.5 mg L?1 KIN, while the fewest germinated on medium with 1 mg L?1 DIC, 1 mg L?1 PIC, and 0.5 mg L?1 KIN. One hundred thirty germinated haploid embryos converted into haploid plants. Fifty oat DH lines were obtained after colchicine treatment.  相似文献   

2.
Medicinal properties of Butea monosperma (BM) and overexploitation of bark as a rich source of flavonoids for different biological activities, development of efficient method for high frequency somatic embryos and in vitro synthesis of bioactive secondary metabolites using plant tissue culture technology is important. Initially, callus was induced from leaf explants of BM on Murashige and Skoog (MS) medium containing 0.25 mg L?1 2,4-d-dichlorophenoxyacetic acid (2,4-d) with 0.1 mg L?1 kinetin (Kn) and ascorbic acid (AA). MS half strength macronutrients and full strength micronutrients containing 0.25 mg L?1 2,4-d with 0.1 mg L?1 Kn, and 0.5 mg L?1 AA provided fragile callus with 84.0 ± 1.00 % optimal growth response. Shoot formation occurred via somatic embryogenesis through an intermediary callus phase. However, 2.1 mg L?1 thidiazuron with 0.5 mg L?1 AA provides high frequency (79.6 ± 2.02 %) of somatic embryogenesis within 5 weeks. Developed embryos when transferred to woody plant medium containing 0.5 mg L?1 AA with 3.0 mg L?1 Kn and 0.5 mg L?1 α naphthalene acetic acid responded 44.0 ± 0.00 % embryo maturation, whereas 0.5 mg L?1 Kn, 0.3 mg L?1 indole-3-butyric acid, and 0.25 mg L?1 AA induced rooting within 6 and 8 weeks, respectively. Liquid chromatography electro spray ionization quadrupole time of flight mass spectrometry (LC ESI Q-TOF MS) analysis of in vitro cultures showed similarity to those compounds identified in wild grown leaf samples known for osteogenic activity. Histological investigation through scanning electron microscopy demonstrates the developmental stages of somatic embryos, shoot bud formation, and induction of root primordial.  相似文献   

3.
Although several studies have been reported on the micropropagation of the pistachio and its rootstocks, to date none of them had been efficient on the mass production of these plants in bioreactor systems. Thus, the micropropagation of juvenile pistachio shoot tips and nodal buds was investigated in a temporary immersion bioreactor system (RITA®) and on a conventional semi-solid medium. Among the tested immersion conditions, immersion for 24 min every 16 h reduced vitrification and improved proliferation in the pistachio. Interactions were evident in immersion time and frequency in nodal segments. Nodal buds were better than shoot tips as the highest multiple shoot formation was recorded in MS medium containing 4 mg L?1 BA and 0.1 mg L?1 GA3 in RITA®. Although shoot tip necrosis (STN) was observed in shoots proliferated on semi-solid MS medium, such a symptom did not occur in shoots sprouted in the RITA®. Additionally, these optimized conditions were applied to nodal buds of mature male pistachio ‘Atl?’ and Pistacia rootstocks (P. khinjuk Stocks and P. atlantica Desf.), and the micropropagation in the bioreactor system, in comparison to the semi-solid medium, was also improved. Furthermore, in vitro rooting of pistachio plantlets, despite the lower range (27.5 %), was also achieved in RITA®. However, rooting was better on semi-solid medium for all tested species (ranged between 50 and 70 %). The results of this study showed that RITA® could be used for the mass propagation of pistachio and its rootstocks, as well as for other woody plant species.  相似文献   

4.
Using mature cotyledonary explants of Fraxinus mandshurica, an efficient plant regeneration system was developed via somatic embryogenesis. More than 67 % of mature cotyledons of zygotic embryos yielded 23–159 somatic embryos (SEs) per explant when incubated on medium consisting of half-strength Murashige and Skoog (MS) salts and vitamins (MS1/2) supplemented with 8.88 μM 6-benzyladenine (BA), 26.84 μM naphthaleneacetic acid (NAA), 75 g L?1 sucrose, and 400 mg L?1 casein hydrolysate (CH). Approximately, 82 % of induced SEs were observed on browning cotyledonary explants. Histological studies of cotyledon explants at various stages of somatic embryogenesis revealed that the SEs originated from single epidermal cells and developed to the globular, heart, torpedo, and cotyledonary stage embryos. Secondary somatic embryos (SSEs) formed on the surface of radicle tips of the SEs. Addition of low concentrations of NAA and 200–400 mg L?1 CH to MS1/2 medium increased SSE induction. Cotyledonary SSEs were cultured on MS1/2 medium with 10 mM abscisic acid in the presence of light to promote maturation, and >92 % of mature SSEs were able to germinate with normal shoots. After 8 weeks in culture in the presence of light on medium with one-third of the MS macroelements as well as 0.06 μM NAA, >94 % of the germinated SSEs converted into plantlets. Plantlets acclimatized successfully to ex vitro conditions and developed normal phenotypes under field conditions.  相似文献   

5.
Boesenbergia rotunda is a perennial ginger species rich in flavonoids, flavones, and cyclohexenyl chalcone derivatives. Several of these secondary metabolites have shown promising antiviral and anticancer activities, and thus, it is important to optimize methods for robust production of clonal materials. In this study, cell suspensions were established and their growth capacities were evaluated in liquid media supplemented with varying growth regulator compositions. The highest settled cell volume of 6.1?±?0.3 ml with a specific growth rate of 0.0892?±?0.0035 was achieved by maintaining cells in Murashige and Skoog liquid media supplemented with 1.0 mg L?1 of 2,4-dichlorophenoxyacetic acid and 0.5 mg L?1 6-benzyladenine, representing a 12-fold increase in cell volume during the culture period. A somatic embryogenesis rate of 1,433.33?±?387.84 somatic embryos per milliliter of settled cells was achieved with an inoculation cell density of 50 μl settled cell volume and on growth regulator-free agar plates. Around half (53.5?±?7.9%) of the somatic embryos germinated into complete plantlets on media supplemented with 3 mg L?1 6-benzyladenine and 1 mg L?1 α-naphthaleneacetic acid. The plantlets were successfully transferred to soil and grown in the greenhouse. Phytochemical profiling via high-performance liquid chromatography analysis revealed that regenerated plantlets retained the capacity to produce and accumulate bioactive compounds. Hence, this protocol will be helpful for metabolic engineering and functional studies of genes and enzymes involved in the biosynthetic pathway of valuable compounds in B. rotunda.  相似文献   

6.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

7.
An improved protocol for plant regeneration via somatic embryogenesis was developed using mature macaw palm (Acrocomia aculeata) zygotic embryos as initial explant. For induction of the embryogenic callus (EC), two basic media (BM) were tested consisting of Murashige and Skoog and Eeuwens (Y3) salts with 30 g L?1 sucrose, 0.5 g L?1 glutamine and 2.5 g L?1 Phytagel. The 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6-trichloro-picolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) auxins were added to the culture media at concentrations of 0, 1.5 or 3.0 mg L?1. After 240 days, the embryogenic calli were transferred to the respective BM media with auxin concentrations reduced to 0.5 or 1.0 mg L?1 in order to differentiate the somatic embryos (SEs). Plant regeneration was performed on the BM media without growth regulators. Embryogenic calli were observed after 180 days of culture and in all treatments with auxin. The Y3 medium showed the best EC formation results (60.8 %). These calli showed yellowish coloration, compact consistency and nodular aspect. After 60 days in differentiation medium, SEs were verified in different stages of development. Histological analysis showed that the SEs were formed from a nodular EC. The SEs generally presented unicellular origin with suspensor formation, and at the end of development, bipolar embryos were observed. The plant regeneration frequency reached levels up to 31.9 % when using induction medium consisting of Y3 associated to 1.5 mg L?1 of 2,4-D and the subsequent auxin reduction to 0.5 mg L?1 in the differentiation stage. Regenerated plants showed normal development, with root and aerial part growth.  相似文献   

8.
We report an efficient somatic embryogenesis and plant regeneration system using leaf cultures of Citrullus colocynthis (L.) and assessed the effect of plant growth regulators on the regeneration process. Initially leaf explants were cultured on Murashige and Skoog medium supplemented with different concentrations of auxins viz., 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid, gibberellic acid alone and along with combination of 6-benzylaminopurine. The different forms of calli such as compact, white friable, creamy friable, brownish nodular, green globular and green calli were induced from the leaf explants on MS medium containing different concentrations of auxins and gibberellins. Subsequently initial callus was subcultured at 1.5 mg L?1 BAP + 1.0 mg L?1 2,4-D which resulted in 25 % somatic embryos from 85 % nodular embryogenic nodular callus that is highest percentage. Similarly the lowest percentage of somatic embryos was recorded at 2.5 mg L?1 BAP + 0.5 mg L?1 NAA from 55 % embryogenic globular callus i.e., 16 %. High frequency of embryo development takes place at intermittent light when compared with continuous light in the individual subcultures. The cotyledonary embryos were developed into complete platelets on MS medium. In vitro regenerated plantlets were washed to remove the traces of agar and then transferred to sterile vermiculite and sand (2:1) containing pot.  相似文献   

9.
A simple efficient in vitro plant regeneration system was developed by direct and indirect somatic embryogenesis of Drimia robusta, a medicinal plant extensively used in South African traditional medicine. Different developmental stages of somatic embryos (SEs: globular embryos, partial pear-shaped embryos and club-shaped embryos), club-shaped cotyledon initiation, plumule initiation and plantlets were directly obtained from leaf explants on Murashige and Skoog (MS) medium containing 3.5 % (w/v) sucrose and different plant growth regulators (PGRs). In MS medium containing 3.5 % (w/v) sucrose and supplemented with 10 μM picloram, 1 μM thidiazuron (TDZ) and 20 μM glutamine, a higher number of SEs and plantlets were achieved. These were established onto half-strength MS medium followed by successful acclimatization (100 %) in the greenhouse. Liquid somatic embryo medium (SEML) containing 500 mg of friable embryogenic callus on MS medium supplemented with different concentrations and combinations of PGRs and organic elicitors produced different stages of SEs. Somatic embryo production was enhanced by 0.5 μM picloram, 1 μM TDZ and mebendazole treatment. The highest number of plantlets (9.0 ± 0.70) was obtained in SEML containing 0.5 μM picloram, 1 μM TDZ and 25 mg l?1 haemoglobin. All the cotyledon and plumule embryos germinated on half-strength MS medium, however 90 % of SEs germinated on half-strength MS medium containing 0.5 μM naphthaleneacetic acid. All plantlets were successfully acclimatized in the greenhouse. This first report of D. robusta somatic embryogenesis provides an opportunity to control extinction threats, ensure germplasm conservation and provides a system for analysis of bioactive compounds and bioactivity.  相似文献   

10.
For the first time we have developed a reliable and efficient vacuum infiltration-assisted Agrobacterium-mediated genetic transformation (VIAAT) protocol for Indian soybean cultivars and recovered fertile transgenic soybean plants through somatic embryogenesis. Immature cotyledons were used as an explant and three Agrobacterium tumefaciens strains (EHA 101, EHA 105, and KYRT 1) harbouring the binary vector pCAMBIA1301 were experimented in the co-cultivation. The immature cotyledons were pre-cultured in liquid somatic embryo induction medium prior to vacuum infiltration with the Agrobacterium suspension and co-cultivated for 3 days on co-cultivation medium containing 50 mg l?1 citric acid, 100 µM acetosyringone, and 100 mg l?1 l-cysteine. The transformed somatic embryos were selected in liquid somatic embryo induction medium containing 10 mg l?1 hygromycin and the embryos were germinated in basal medium containing 20 mg l?1 hygromycin. The presence and integration of the hpt II and gus genes into the soybean genome were confirmed by GUS histochemical assay, polymerase chain reaction, and Southern hybridization. Among the different combinations tested, high transformation efficiency (9.45 %) was achieved when immature cotyledons of cv. Pusa 16 were pre-cultured for 18 h and vacuum infiltrated with Agrobacterium tumefaciens KYRT 1 for 2 min at 750 mm of Hg. Among six Indian soybean cultivars tested, Pusa 16 showed highest transformation efficiency of 9.45 %. The transformation efficiency of this method (VIAAT) was higher than previously reported sonication-assisted Agrobacterium-mediated transformation. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into soybean has been developed.  相似文献   

11.
We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from petal explant of Chrysanthemum (Chrysanthemum morifolium) cv. ‘Baeksun’. Somatic embryogenesis was induced from petal explants on the Murashige and Skoog (MS) medium supplemented with 1.0 mg l?1 2,4-dichlorophenoxyacetic acid (2,4-D) and 3.0 mg l?1 6-benzyladenine (BA), yielding the highest mean number of embryos (56.3) per explant after 5 weeks of culture. We evaluated the effects of basal medium and various concentrations of sucrose on the proliferation of secondary somatic embryos. MS medium was observed to be more effective in promoting the proliferation of somatic embryos than half-strength Murashige and Skoog (1/2MS). In addition, 1 % sucrose was also found to be the best in induction of secondary embryogenesis. The highest germination rate (70 %) of the somatic embryos was observed on the MS medium containing 0.2 mg l?1 α-naphthalene acetic acid and 1 g l?1 activated charcoal (AC). Shoots elongated rapidly and roots developed well on hormone-free MS medium with 1 g l?1 AC and successfully acclimated in the greenhouse. Flow cytometric analysis of the primary somatic embryos, secondary somatic embryos, and the somatic embryo-obtained plants along with the parent grown in the greenhouse showed that they all had same identical peaks, indicating that there was no variation of ploidy level during the regeneration process. We expect that our report would be useful for micropropagation and Agrobacterium-mediated genetic transformation studies of this cultivar.  相似文献   

12.
Avocado globular somatic embryos were transformed with three binary vectors, pK7FNF2, pK7RNR2 and pK7S*NF2, harboring the marker genes gfp, DsRed and a gfp-gus fusion gene, respectively. GFP and DsRed fluorescence was detected in embryogenic lines growing in selection medium 2 months after Agrobacterium inoculation. The fluorescence signal was maintained thereafter in transgenic calli, as well as in mature somatic embryos. Red fluorescence in pK7RNR2 transgenic lines was higher and more easily observable than GFP fluorescence. Furthermore, calli transformed with pK7S*NF2, harboring gfp-gus, showed higher level of fluorescence than those transformed with pK7FNF2, containing two gfp. To improve plant recovery, maturated transgenic embryos that failed to germinate or showed an underdeveloped shoot were cultured for 4 weeks in a medium with 1 mg l?1 TDZ and 1 mg l?1 BA after partial removal of cotyledons. A 50% of embryos developed one or several shoots on the cut surface. These embryos were cultured for 4 additional weeks in a medium with 1 mg l?1 BA for shoot elongation and then, shoots were grafted in vitro onto seedling rootstocks. Culture of micrografts in solid MS medium supplemented with 1 mg l?1 BA allowed a 60–80% success rate. Young leaves from transgenic plants showed GFP or DsRed fluorescence located in the nucleus. The results obtained indicate that fluorescent marker genes, especially DsRed, could be useful for early selection of transgenic material and optimization of the transformation parameters in avocado. Furthermore, the protocol established allowed the successful recovery of transgenic plants, one of the main limiting steps in avocado transformation.  相似文献   

13.
Coriandrum sativum L. is an annual herb belonging to the family Umbelliferae. It is used as a spice plant in Indian subcontinent and it has several medicinal applications as well. In this present article, an efficient plant regeneration protocol from protoplasts via somatic embryogenesis was established and is reported. This is the first ever protoplast isolation study in Indian local coriander in which plant regeneration was achieved. Hypocotyl-derived embryogenic callus was used as a source of protoplast. The embryogenic callus suspension was prepared by transferring tissues onto rotary-agitated liquid Murashige and Skoog, added with 1.0 mg l?1 2,4-Dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l?1 KIN (6-furfurylaminopurine). The suspension was digested with enzymatic solutions and a combination of cellulase (2.0 %), pectinase (1.0 %), macerozyme (0.02 %) and driselase (0.50 %) induced maximum yield of protoplasts (34.25 × 105). In 1.0 mg l?1 2,4-D + 1.0 mg l?1 KIN containing medium, protoplasts divided well and formed maximum number of microcolonies (14.30/test tube). The protoplast callus (PC) biomass grew well in solid medium. The protoplast embryogenic callus was rich in protein, proline and sugar compared to non-embryogenic PC. The protoplast originated callus later differentiated into somatic embryos. The somatic embryo morphology, scanning electron microscopy and histology of embryo origin and development were investigated and discussed in details in this present communication. In 1.0 mg l?1 2,4-D + 0.5 mg l?1 BA (6-Benzyladenine), maximum number of embryos were formed on microcallus (26.6/callus mass). The embryo matured and germinated into plantlets at a low to moderate rate, highest (31.3 %) embryo germination was observed in 1.0 mg l?1 BA + 0.5 mg l?1 α-Naphthalene acetic acid added medium. The entire process of regeneration took about 4–5 months’ time for recovering plantlets from protoplasts.  相似文献   

14.
In the present study a simple and efficient somatic embryogenesis system was developed from leaf explants of Lycopersicon esculentum L. The protocol has been developed by using plant growth regulators and seaweed extracts a natural biostimulant. The leaf sections were initially cultured on to leaf embryogenic callus induction medium fortified with various concentration and combinations of 2,4-dichlorophenoxy acetic acid (0.2–1.0 mg L?1), picloram (0.2–1.0 mg L?1), and kinetin (0.1–0.5 mg L?1). The best responding concentration in induction of friable embryogenic callus was tested for the proliferation. The friable cultures were detached from the mother culture and inoculated in three different media supplemented with plant growth regulators, plus 0–25 % Caulerpa scalpelliformis or 0–25 % Gracilaria corticata extracts for embryo development. A twofold increase in maturation and germination of somatic embryos was observed in the media containing seaweed extracts (MSMG2 and MSMG3) than the control (MSMG1). The plantlets transferred from plant growth chamber to greenhouse conditions exhibited higher survival rate (90 %) than directly shifted plantlets.  相似文献   

15.
The effects of the culture system used for embryo proliferation were investigated with the aim of improving multiplication rates and somatic embryo quality in two embryogenic lines of Quercus robur derived from mature trees (B-17 and Sainza). Embryo proliferation medium was defined following comparison of five different semi-solid media, and the highest multiplication rates (based on the total number of embryos and number of cotyledonary-shaped embryos) were achieved with medium supplemented with 0.44 μM benzyladenine for both lines. Embryo proliferation on semi-solid medium was compared with that obtained by a temporary immersion system (TIS), in which four cycles with immersion frequencies of 1 min every 6, 8, 12 or 24 h were tested. TIS promoted a significant increase in proliferated embryo biomass, with the growth index (GI) two and four times higher than in semi-solid medium in B-17 and Sainza genotypes, respectively. An immersion cycle of 1 min every 8 or 12 h produced approximately 700 somatic embryos (B-17) and 1,500 somatic embryos (Sainza) per RITA® bioreactor, with significant differences in the latter genotype with respect to gelled medium. TIS had also a significant effect on somatic embryo synchronization as it enabled a higher production of cotyledonary embryos (90%), which represents increases of 14% (B-17) and 20% (Sainza) with respect to gelled medium. For germination of embryos proliferated in TIS two maturation systems were applied: (1) culture in semi-solid medium containing 6% sorbitol or (2) culture by TIS (without sorbitol) at a frequency of 1 min immersion every 48 h. Germination ability was higher after maturation on sorbitol medium and plantlet conversion occurred in 48% (B-17) and 13% (Sainza) embryos. TIS produced large numbers of well-developed cotyledonary embryos, hence reduced the cost and labor.  相似文献   

16.
An efficient Agrobacterium-mediated genetic transformation method has been developed for the medicinal plant Podophyllum hexandrum Royle, an important source of the anticancer agent podophyllotoxin. Highly proliferating embryogenic cells were infected with Agrobacterium tumefaciens harbouring pCAMBIA 2301, which contains npt II and gusA as selection marker and reporter genes, respectively. The transformed somatic embryos and plantlets were selected on Murashige and Skoog (MS) basal medium containing kanamycin and germination medium, respectively. GUS histochemical analysis, polymerase chain reaction and Southern blot hybridisation confirmed that gusA was successfully integrated and expressed in the P. hexandrum genome. Compared with cefotaxime, 200 mg l?1 timentin completely arrested Agrobacterium growth and favoured somatic embryo development from embryogenic cells. Among the different Agrobacterium strains, acetosyringone concentrations and co-cultivation durations tested, embryogenic callus infected with A. tumefaciens EHA 105 and co-cultivated for 3 days on MS basal medium containing 100 μM acetosyringone proved to be optimal and produced a transformation efficiency of 29.64 % with respect to germinated GUS-positive plantlets. The Agrobacterium-mediated genetic transformation method developed in the present study facilitates the transference of desirable genes into P. hexandrum to improve the podophyllotoxin content and to enhance other useful traits.  相似文献   

17.
Somatic embryogenesis and organogenesis in Lilium pumilum were successfully regulated by picloram, α-naphthaleneacetic acid (NAA), and 6-benzyladenine (BA). In organogenesis, the highest shoot regeneration frequency (92.5%) was obtained directly from bulb scales on Murashige and Skoog (MS) medium containing 2.0 mg L?1 BA and 0.2 mg L?1 NAA, while organogenic callus (OC) formed from leaves on MS medium supplemented with 1.0 mg L?1 BA and 0.5 mg L?1 NAA. Following subculture, 76.7% of OC regenerated shoots. In somatic embryogenesis, the combination of picloram and NAA increased the amount of embryogenic callus (EC) that formed with a maximum on 90.7% of all explants which formed 11 somatic embryos (SEs) per explant. Differences between EC and OC in cellular morphology and cell differentiation fate were easily observed. SEs initially formed via an exogenous or an endogenous origin. The appearance of a protoderm in heart-shaped SE and the bipolar shoot–root development in oval-shaped SE indicated true somatic embryogenesis. This protocol provides a new and detailed regulation and histological examination of regeneration pattern in L. pumilum.  相似文献   

18.
The purpose of the present study was to establish a simple and efficient protocol for pear regeneration and transformation. Major factors that influence multiplication, rooting, regeneration, and transformation (concentrations of plant growth regulators, pre-culture or co-culture times, and kanamycin concentration) were examined in wild Pyrus ussuriensis Maxim ‘Shanli’. The results showed that the best multiplication index (5.1) was obtained on Murashige and Skoog (MS) medium containing 1.5 mg L?1 N6-benzyladenine (BA) and 0.2 mg L?1 indole-3-butyric acid (IBA) with healthy and strong growth. On 1/2 MS medium supplemented with 1.0 mg L?1 IBA or 0.2 mg L?1 indole-3-acetic acid (IAA), the rooting percentage was up to 94.4%. The highest regeneration rate (100%) and number of adventitious shoots per explant (6.30) were obtained on Nitsch and Nitsch 1969 (NN69) medium containing 2.0 or 3.0 mg L?1 thidiazuron (TDZ) and 0.2 mg L?1 IAA with leaves as explants. Transformation was successfully achieved using the following protocol: cut-wounding leaves pre-cultured for 5 days were co-cultivated with the Agrobacterium tumefaciens strain EHA105 harboring 35S::DHN3 plasmid for 2 days, then were transferred to regeneration medium containing 15 mg L?1 kanamycin to select the resistant plants, and followed by being cultured on rooting medium supplemented with 5 mg L?1 kanamycin. PCR analysis revealed that 27 independent transgenic lines were obtained, with the transformation rate up to 11.72%. We postulate that the regeneration and transformation system in this study is an alternative method for pear breeding.  相似文献   

19.
Polygonum minus has been reported to contain valuable metabolites and to date, there is no report on using cell culture technique for metabolite production in P. minus. Naphthalene acetic acid (NAA) concentrations in the range of 2–6 mg L?1 were used in a matrix of combinations with dichlorophenoxyacetic acid (2,4-D) concentrations in the range of 2–10 mg L?1 as plant growth regulators (PGRs) to induce callus cultures. Media that were supplemented with 2 mg L?1 2,4-D + 4 mg L?1 NAA, 2 mg L?1 2,4-D + 6 mg L?1 NAA and 6 mg L?1 2,4-D + 8 mg L?1 NAA were effective for callus induction (93.3 % of the explants produced callus). To establish cell culture, the best growth was obtained from medium that was supplemented with 1 mg L?1 2,4-D + 2 mg L?1 NAA. From a 1-g inoculum size, the fresh weight increases exponentially after 5–10 days of culture, and a 26.71 g maximum fresh weight was obtained after 25 days of culture. The cell culture medium was then analyzed using gas chromatography–mass spectrometry (GC–MS). Jasmonic acid (100, 50, 25 and 5 μM), salicylic acid (100, 50, 25 and 5 μM), yeast extract (500, 250 and 100 mg L?1) and glass beads were used in this research as elicitors. The cell cultures were then incubated with the different elicitors for 1, 2, 3 and 4 days. Several compounds with high peak area percentages were detected, including 2-furancarboxaldehyde, 5-hydroxymethyl, furfural, and 2-cyclopenten-1-one, 2-hydroxy. These results show the diversity of metabolites released by P. minus cell into the culture medium under control conditions.  相似文献   

20.
Trachyspermum ammi (L.) Sprague (Ajowan) is an endangered medicinal plant with useful pharmaceutical properties. Ex situ conservation of this medicinal plant needs the development of an in vitro regeneration protocol using somatic embryogenesis. In the present study, a high-precision image-processing approach was successfully applied to measure physical properties of embryogenic callus. Explant age and the concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin (Kin), and sucrose were used as inputs, and an artificial intelligence technique was applied to predict physical properties of embryogenic callus, and the number of somatic embryos produced. Artificial neural network (ANN) models were tested to find the best combinations of input variables that affected output variables. The lower values of root mean square error, and mean absolute error, and the highest values of determination coefficient, were achieved when all four input variables were applied to predict the number of somatic embryos, the area of the callus, the perimeter of the callus, the Feret diameter of the callus, the roundness of the callus, and the true density of the callus in ANN models. The highest measured and predicted number of somatic embryos were achieved from the interaction of 15-d-old explants?×?1.5 mg L?1 2,4-D?×?0.5 mg L?1 Kin?×?2.5% (w/v) sucrose. Based on sensitivity analysis, the 2,4-D concentration was the most important component in the culture medium that affected the number of somatic embryos and physical properties of the embryogenic callus tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号