首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Using dual cultures of arbuscular mycorrhizal (AM) fungi and Medicago truncatula separated by a physical barrier, we demonstrate that hyphae from germinating spores produce a diffusible factor that is perceived by roots in the absence of direct physical contact. This AM factor elicits expression of the Nod factor-inducible gene MtENOD11, visualized using a pMtENOD11-gusA reporter. Transgene induction occurs primarily in the root cortex, with expression stretching from the zone of root hair emergence to the region of mature root hairs. All AM fungi tested (Gigaspora rosea, Gigaspora gigantea, Gigaspora margarita, and Glomus intraradices) elicit a similar response, whereas pathogenic fungi such as Phythophthora medicaginis, Phoma medicaginis var pinodella and Fusarium solani f.sp. phaseoli do not, suggesting that the observed root response is specific to AM fungi. Finally, pMtENOD11-gusA induction in response to the diffusible AM fungal factor is also observed with all three M. truncatula Nod(-)/Myc(-) mutants (dmi1, dmi2, and dmi3), whereas the same mutants are blocked in their response to Nod factor. This positive response of the Nod(-)/Myc(-) mutants to the diffusible AM fungal factor and the different cellular localization of pMtENOD11-gusA expression in response to Nod factor versus AM factor suggest that signal transduction occurs via different pathways and that expression of MtENOD11 is differently regulated by the two diffusible factors.  相似文献   

2.
3.
4.
Rhizobium nodulation (Nod) factors are specific lipochito-oligosaccharide signals essential for initiating in root hairs of the host legume developmental responses that are required for controlled entry of the microsymbiont. In this article, we focus on the Nod factor signal transduction pathway leading to specific and cell autonomous gene activation in Medicago truncatula cv Jemalong in a study making use of the Nod factor-inducible MtENOD11 gene. First, we show that pharmacological antagonists that interfere with intracellular ion channel and Ca2+ pump activities are efficient blockers of Nod factor-elicited pMtENOD11-beta-glucuronidase (GUS) expression in root hairs of transgenic M. truncatula. These results indicate that intracellular Ca2+ release and recycling activities, essential for Ca2+ spiking, are also required for specific gene activation. Second, pharmacological effectors that inhibit phospholipase D and phosphoinositide-dependent phospholipase C activities are also able to block pMtENOD11-GUS activation, thus underlining a central role for multiple phospholipid signaling pathways in Nod factor signal transduction. Finally, pMtENOD11-GUS was introduced into all three Nod-/Myc- dmi M. truncatula mutant backgrounds, and gene expression was evaluated in response to the mastoparan peptide agonist Mas7. We found that Mas7 elicits root hair MtENOD11 expression in dmi1 and dmi2 mutants, but not in the dmi3 mutant, suggesting that the agonist acts downstream of DMI1/DMI2 and upstream of DMI3. In light of these results and the recently discovered identities of the DMI gene products, we propose an integrated cellular model for Nod factor signaling in legume root hairs in which phospholipids play a key role in linking the Nod factor perception apparatus to downstream components such as Ca2+ spiking and ENOD gene expression.  相似文献   

5.
Lipochitooligosaccharide nodulation factors (Nod factors) produced by rhizobia are a major host range determinant. These factors play a pivotal role in the molecular signal exchange, infection and induction of symbiotic developmental responses in legumes leading to the formation of a nodule in which rhizobia carry out N2 fixation. Determining whether rice ( Oryza sativa ) can respond to Nod factors could lead to strategies that would make rice amenable to develop a nitrogen-fixing endosymbiotic association with rhizobia. We introduced into rice the promoter of the infection-related gene MtENOD12 (from Medicago truncatula ) fused to the β-glucuronidase (GUS) reporter gene to serve as a molecular marker to aid in the detection of Nod factor signal perception by rice cells. Treatment of the transgenic rice roots with Nod factors (10–6–10–9 m ) under nitrogen-limiting conditions induced MtENOD12 -GUS expression in cortical parenchyma, endodermis and pericycle. In contrast, chitooligosaccharide backbone alone failed to elicit such a response in the root tissues. These findings demonstrate that rice roots perceive Nod factors and that these lipochitooligosaccharides, but not simple chitin oligomers, act as signal molecules in activating MtENOD12 in cortical parenchyma as in legumes. Exogenous application of N -naphthaleneacetic acid mimicked the Nod factor-elicited tissue-specific expression of MtENOD12 in roots while cytokinins inhibited it, thus evidencing that Nod factors, auxin and cytokinins probably act on similar signaling elements responsible for the regulation of MtENOD12 activation in rice. Taken together, these results suggest that at least a portion of the signal transduction machinery important for legume nodulation is likely to exist in rice.   相似文献   

6.
The symbiotic infection of the model legume Medicago truncatula by Sinorhizobium meliloti involves marked root hair curling, a stage where entrapment of the microsymbiont occurs in a chamber from which infection thread formation is initiated within the root hair. We have genetically dissected these early symbiotic interactions using both plant and rhizobial mutants and have identified a M. truncatula gene, HCL, which controls root hair curling. S. meliloti Nod factors, which are required for the infection process, induced wild-type epidermal nodulin gene expression and root hair deformation in hcl mutants, while Nod factor induction of cortical cell division foci was reduced compared to wild-type plants. Studies of the position of nuclei and of the microtubule cytoskeleton network of hcl mutants revealed that root hair, as well as cortical cells, were activated in response to S. meliloti. However, the asymmetric microtubule network that is typical of curled root hairs, did not form in the mutants, and activated cortical cells did not become polarised and did not exhibit the microtubular cytoplasmic bridges characteristic of the pre-infection threads induced by rhizobia in M. truncatula. These data suggest that hcl mutations alter the formation of signalling centres that normally provide positional information for the reorganisation of the microtubular cytoskeleton in epidermal and cortical cells.  相似文献   

7.
LYK3 is a lysin motif receptor-like kinase of Medicago truncatula, which is essential for the establishment of the nitrogen-fixing, root nodule symbiosis with Sinorhizobium meliloti. LYK3 is a putative receptor of S. meliloti Nod factor signals, but little is known of how it is regulated and how it transduces these symbiotic signals. In a screen for LYK3-interacting proteins, we identified M. truncatula Plant U-box protein 1 (PUB1) as an interactor of the kinase domain. In planta, both proteins are localized and interact in the plasma membrane. In M. truncatula, PUB1 is expressed specifically in symbiotic conditions, is induced by Nod factors, and shows an overlapping expression pattern with LYK3 during nodulation. Biochemical studies show that PUB1 has a U-box-dependent E3 ubiquitin ligase activity and is phosphorylated by the LYK3 kinase domain. Overexpression and RNA interference studies in M. truncatula show that PUB1 is a negative regulator of the LYK3 signaling pathway leading to infection and nodulation and is important for the discrimination of rhizobia strains producing variant Nod factors. The potential role of PUB E3 ubiquitin ligases in controlling plant-microbe interactions and development through interacting with receptor-like kinases is discussed.  相似文献   

8.
Oldroyd GE  Long SR 《Plant physiology》2003,131(3):1027-1032
Bacterially derived Nod factor is critical in the establishment of the legume/rhizobia symbiosis. Understanding the mechanisms of Nod factor perception and signal transduction in the plant will greatly advance our understanding of this complex interaction. Here, we describe the identification of a new locus, nodulation-signaling pathway 2 (NSP2), of Medicago truncatula that is involved in Nod factor signaling. Mutants at this locus are blocked for Nod factor-induced gene expression and show a reduced root hair deformation response. nsp2 plants also show a complete absence of infection and cortical cell division following Sinorhizobium meliloti inoculation. Nod factor-induced calcium spiking, one of the earliest responses tested, is still functional in these mutant plants. We conclude that the gene NSP2 is a component of the Nod factor signal transduction pathway that lies downstream of the calcium-spiking response.  相似文献   

9.
10.
The nitrogen-fixing symbiosis between Aeschynomene indica and photosynthetic bradyrhizobia is the only legume-rhizobium association described to date that does not require lipochito-oligosaccharide Nod factors (NF). To assist in deciphering the molecular basis of this NF-independent interaction, we have developed a protocol for Agrobacterium rhizogenes-mediated transformation of A. indica. The cotransformation frequency (79%), the nodulation efficiency of transgenic roots (90%), and the expression pattern of the 35S Cauliflower mosaic virus promoter in transgenic nodules were all comparable to those obtained for model legumes. We have made use of this tool to monitor the heterologous spatio-temporal expression of the pMtENOD11-β-glucuronidase fusion, a widely used molecular reporter for rhizobial infection and nodulation in both legumes and actinorhizal plants. While MtENOD11 promoter activation was not observed in A. indica roots prior to nodulation, strong reporter-gene expression was observed in the invaded cells of young nodules and in the cell layers bordering the central zone of older nodules. We conclude that pMtENOD11 expression can be used as an infection-related marker in A. indica and that Agrobacterium rhizogenes-mediated root transformation of Aeschynomene spp. will be an invaluable tool for determining the molecular basis of the NF-independent symbiosis.  相似文献   

11.
12.
Previous grafting experiments have demonstrated that legume shoots play a critical role in symbiotic development of nitrogen-fixing root nodules by regulating nodule number. Here, reciprocal grafting experiments between the model legumes Lotus japonicus and Medicago truncatula were carried out to investigate the role of the shoot in the host-specificity of legume-rhizobia symbiosis and nodule type. Lotus japonicus is nodulated by Mesorhizobium loti and makes determinate nodules, whereas M. truncatula is nodulated by Sinorhizobium meliloti and makes indeterminate nodules. When inoculated with M. loti, L. japonicus roots grafted on M. truncatula shoots produced determinate nodules identical in appearance to those produced on L. japonicus self-grafted roots. Moreover, the hypernodulation phenotype of L. japonicus har1-1 roots grafted on wild-type M. truncatula shoots was restored to wild type when nodulated with M. loti. Thus, L. japonicus shoots appeared to be interchangeable with M. truncatula shoots in the L. japonicus root/M. loti symbiosis. However, M. truncatula roots grafted on L. japonicus shoots failed to induce nodules after inoculation with S. meliloti or a mixture of S. meliloti and M. loti. Instead, only early responses to S. meliloti such as root hair tip swelling and deformation, plus induction of the early nodulation reporter gene MtENOD11:GUS were observed. The results indicate that the L. japonicus shoot does not support normal symbiosis between the M. truncatula root and its microsymbiont S. meliloti, suggesting that an unidentified shoot-derived factor may be required for symbiotic progression in indeterminate nodules.  相似文献   

13.
14.
Legumes develop different types of lateral organs from their primary root, lateral roots and nodules, the latter depending on a symbiotic interaction with Sinorhizobium meliloti. Phytohormones have been shown to function in the control of these organogeneses. However, related signaling pathways have not been identified in legumes. We cloned and characterized the expression of Medicago truncatula genes encoding members of cytokinin signaling pathways. RNA interference of the cytokinin receptor homolog Cytokinin Response1 (Mt CRE1) led to cytokinin-insensitive roots, which showed an increased number of lateral roots and a strong reduction in nodulation. Both the progression of S. meliloti infection and nodule primordia formation were affected. We also identified two cytokinin signaling response regulator genes, Mt RR1 and Mt RR4, which are induced early during the symbiotic interaction. Induction of these genes by S. meliloti infection is altered in mutants affected in the Nod factor signaling pathway; conversely, cytokinin regulation of the early nodulin Nodule Inception1 (Mt NIN) depends on Mt CRE1. Hence, cytokinin signaling mediated by a single receptor, Mt CRE1, leads to an opposite control of symbiotic nodule and lateral root organogenesis. Mt NIN, Mt RR1, and Mt RR4 define a common pathway activated during early S. meliloti interaction, allowing crosstalk between plant cytokinins and bacterial Nod factors signals.  相似文献   

15.
16.
17.
18.
Gibberellins are involved in nodulation of Sesbania rostrata   总被引:1,自引:0,他引:1       下载免费PDF全文
Upon submergence, Azorhizobium caulinodans infects the semiaquatic legume Sesbania rostrata via the intercellular crack entry process, resulting in lateral root-based nodules. A gene encoding a gibberellin (GA) 20-oxidase, SrGA20ox1, involved in GA biosynthesis, was transiently up-regulated during lateral root base nodulation. Two SrGA20ox1 expression patterns were identified, one related to intercellular infection and a second observed in nodule meristem descendants. The infection-related expression pattern depended on bacterially produced nodulation (Nod) factors. Pharmacological studies demonstrated that GAs were involved in infection pocket and infection thread formation, two Nod factor-dependent events that initiate lateral root base nodulation, and that they were also needed for nodule primordium development. Moreover, GAs inhibited the root hair curling process. These results show that GAs are Nod factor downstream signals for nodulation in hydroponic growth.  相似文献   

19.
Y P Wang  K Birkenhead  B Boesten  S Manian  F O'Gara 《Gene》1989,85(1):135-144
The genes controlling the transport of C4-dicarboxylic acids from Rhizobium meliloti have been cloned and analysed. The nucleotide sequence of the control region of the structural dctA and the regulatory dctBD genes has been determined. Comparison with the Rhizobium leguminosarum dct genes revealed a high degree of homology. Gene fusions to the enteric lacZY reporter gene were constructed and the expression of the dctA and dctBD genes studied under various physiological conditions. In free-living cells, the regulatory dctBD genes are absolutely required for the expression of the dctA gene. In the root nodule environment, a dctA::lacZY gene fusion was found to be expressed in an R. meliloti strain mutated in both the dctB and dctD genes, but not in a strain mutated in the dctB gene alone. The presence of the conserved upstream NifA-binding sites on the dctA promoter sequence, coupled with the fact that the dctA::lacZY gene fusion is not expressed in root nodules formed by a nifA mutant strain of R. meliloti, supports the suggestion that NifA may be involved in the symbiotic expression of dctA in the absence of the regulatory dctBD genes. Under micro-aerobic conditions, however, NifA induction alone is not sufficient for expression of the dctA promoter, even though the NifA-dependent nifHDK promoter is highly expressed under these conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号