首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A well‐used metaphor for oceanic islands is that they act as ‘natural laboratories’ for the study of evolution. But how can islands or archipelagos be considered analogues of laboratories for understanding the evolutionary process itself? It is not necessarily the case that just because two or more related species occur on an island or archipelago, somehow, this can help us understand more about their evolutionary history. But in some cases, it can. In this issue of Molecular Ecology, Garrick et al. ( 2014 ) use population‐level sampling within closely related taxa of Galapagos giant tortoises to reveal a complex demographic history of the species Chelonoidis becki – a species endemic to Isabela Island, and geographically restricted to Wolf Volcano. Using microsatellite genotyping and mitochondrial DNA sequencing, they provide a strong case for C. becki being derived from C. darwini from the neighbouring island of Santiago. But the interest here is that colonization did not happen only once. Garrick et al. ( 2014 ) reveal C. becki to be the product of a double colonization event, and their data reveal these two founding lineages to be now fusing back into one. Their results are compelling and add to a limited literature describing the evolutionary consequences of double colonization events. Here, we look at the broader implications of the findings of Garrick et al. ( 2014 ) and suggest genomic admixture among multiple founding populations may be a characteristic feature within insular taxa.  相似文献   

2.
Imagine a single pathogen that is responsible for mass mortality of over a third of an entire vertebrate class. For example, if a single pathogen were causing the death, decline and extinction of 30% of mammal species (including humans), the entire world would be paying attention. This is what has been happening to the world's amphibians – the frogs, toads and salamanders that are affected by the chytrid fungal pathogen, Batrachochytrium dendrobatidis (referred to as Bd), which are consequently declining at an alarming rate. It has aptly been described as the worst pathogen in history in terms of its effects on biodiversity (Kilpatrick et al. 2010). The pathogen was only formally described about 13 years ago (Longcore et al. 1999), and scientists are still in the process of determining where it came from and investigating the question: why now? Healthy debate has ensued as to whether Bd is a globally endemic organism that only recently started causing high mortality due to shifting host responses and/or environmental change (e.g. Pounds et al. 2006) or whether a virulent strain of the pathogen has rapidly disseminated around the world in recent decades, affecting new regions with a vengeance (e.g. Morehouse et al. 2003; Weldon et al. 2004; Lips et al. 2008). We are finally beginning to shed more light on this question, due to significant discoveries that have emerged as a result of intensive DNA‐sequencing methods comparing Bd isolates from different amphibian species across the globe. Evidence is mounting that there is indeed a global panzootic lineage of Bd (BdGPL) in addition to what appear to be more localized endemic strains (Fisher et al. 2009; James et al. 2009; Farrer et al. 2011). Additionally, BdGPL appears to be a hypervirulent strain that has resulted from the hybridization of different Bd strains that came into contact in recent decades, and is now potentially replacing the less‐virulent endemic strains of the pathogen (Farrer et al. 2011). In a new study published in this issue of Molecular Ecology, Schloegel et al. (2012) identify an additional unique Bd lineage that is endemic to the Atlantic Brazilian rainforests (Bd‐Brazil) and provide striking evidence that the Bd‐Brazil lineage has sexually recombined with the BdGPL lineage in an area where the two lineages likely came into contact as a result of classic anthropogenically mediated ‘pathogen pollution’(see below). Fungal pathogens, including Bd, have the propensity to form recombinant lineages when allopatric populations that have not yet formed genetic reproductive barriers are provided with opportunities to intermingle, and virulent strains may be selected for because they tend to be highly transmissible (Fisher et al. 2012). As Schloegel et al. (2012) point out, the demonstrated ability for Bd to undergo meiosis may also mean that it has the capacity to form a resistant spore stage (as yet undiscovered), based on extrapolation from other sexually reproducing chytrids that all have spore stages.  相似文献   

3.
The extent to which phenotypic plasticity, or the ability of a single genotype to produce different phenotypes in different environments, impedes or promotes genetic divergence has been a matter of debate within evolutionary biology for many decades (see, for example, Ghalambor et al. 2007 ; Pfennig et al. 2010 ). Similarly, the role of evolution in shaping phenotypic plasticity remains poorly understood (Pigliucci 2005 ). In this issue of Molecular Ecology, Dayan et al. ( 2015 ) provide empirical data relevant to these questions by assessing the extent of plasticity and divergence in the expression levels of 2272 genes in muscle tissue from killifish (genus Fundulus) exposed to different temperatures. F. heteroclitus (Fig.  1 A) and F. grandis are minnows that inhabit estuarine marshes (Fig.  1 B) along the coasts of the Atlantic Ocean and Gulf of Mexico in North America. These habitats undergo large variations in temperature both daily and seasonally, and these fish are known to demonstrate substantial phenotypic plasticity in response to temperature change (e.g. Fangue et al. 2006 ). Furthermore, the range of F. heteroclitus spans a large latitudinal gradient of temperatures, such that northern populations experience temperatures that are on average ~10°C colder than do southern populations (Schulte 2007 ). By comparing gene expression patterns between populations of these fish from different thermal habitats held in the laboratory at three different temperatures, Dayan et al. ( 2015 ) address two important questions regarding the interacting effects of plasticity and evolution: (i) How does phenotypic plasticity affect adaptive divergence? and (ii) How does adaptive divergence affect plasticity?  相似文献   

4.
House dust mites,Dermatophagoides species (Acari: Pyroglyphidae), produce allergens, known for the provocation of asthma and other allergic reactions. To determine the time needed for complete colonisation of a new house by house dust mites, dust samples were collected from carpets of houses varying from 2 weeks to 2 years in age. In contrast to the expectation, no relation was found between age of the houses on the one hand and average levels of mite-allergensDer pI andDer pII and mite numbers on the other. However, presence of dogs appeared to be positively related to allergen levels. Furthermore, carpets in bedrooms appeared to contain more allergens than carpets in living-rooms. Finally, the age of the mattress was not related to allergen levels of bedroom floors.  相似文献   

5.
Small and isolated populations face threats from genetic drift and inbreeding. To rescue populations from these threats, conservation biologists can augment gene flow into small populations to increase variation and reduce inbreeding depression. Spectacular success stories include greater prairie chickens in Illinois (Westermeier et al. 1998 ), adders in Sweden (Madsen et al. 1999 ) and panthers in Florida (Johnson et al. 2010 ). However, we also know that performing such crosses risks introducing genes that may be poorly adapted to local conditions or genetic backgrounds. A classic example of such ‘outbreeding depression’ occurred when different subspecies of ibex from Turkey and the Sinai were introduced to assist recovery of an ibex population in Czechoslovakia (Templeton 1986 ). Despite being fertile, the hybrids birthed calves too early, causing the whole population to disappear. In the face of uncertainty, conservation biologists have tended to respect genetic identity, shying away from routinely crossing populations. In this issue of Molecular Ecology, Frankham ( 2015 ) compiles empirical data from experimental studies to assess the costs and benefits of between‐population crosses (Fig.  1 ). Crosses screened to exclude those involving highly divergent populations or distinct habitats show large heterosis with few apparent risks of outbreeding depression. This leads Frankham to advocate for using assisted gene flow more widely. But do the studies analysed in this meta‐analysis adequately test for latent outcrossing depression?  相似文献   

6.
For many molecular ecologists, the mantra and mission of the field of ecological genomics could be encapsulated by the phrase ‘to find the genes that matter’ (Mitchell‐Olds 2001 ; Rockman 2012 ). This phrase of course refers to the early hope and current increasing success in the search for genes whose variation underlies phenotypic variation and fitness in natural populations. In the years since the modern incarnation of the field of ecological genomics, many would agree that the low‐hanging fruit has, at least in principle, been plucked: we now have several elegant examples of genes whose variation influences key adaptive traits in natural populations, and these examples have revealed important insights into the architecture of adaptive variation (Hoekstra et al. 2006 ; Shapiro et al. 2009 ; Chan et al. 2010 ). But how well will these early examples, often involving single genes of large effect on discrete or near‐discrete phenotypes, represent the dynamics of adaptive change for the totality of phenotypes in nature? Will traits exhibiting continuous rather than discrete variation in natural populations have as simple a genetic basis as these early examples suggest (Prasad et al. 2012 ; Rockman 2012 )? Two papers in this issue (Robinson et al. 2013 ; Santure et al. 2013 ) not only suggest answers to these questions but also provide useful extensions of statistical approaches for ecological geneticists to study the genetics of continuous variation in nature. Together these papers, by the same research groups studying evolution in a natural population of Great Tits (Parus major), provide a glimpse of what we should expect as the field begins to dissect the genetic basis of what is arguably the most common type of variation in nature, and how genome‐wide surveys of variation can be applied to natural populations without pedigrees.  相似文献   

7.
Clines in phenotypes and genotype frequencies across environmental gradients are commonly taken as evidence for spatially varying selection. Classical examples include the latitudinal clines in various species of Drosophila, which often occur in parallel fashion on multiple continents. Today, genomewide analysis of such clinal systems provides a fantastic opportunity for unravelling the genetics of adaptation, yet major challenges remain. A well‐known but often neglected problem is that demographic processes can also generate clinality, independent of or coincident with selection. A closely related issue is how to identify true genic targets of clinal selection. In this issue of Molecular Ecology, three studies illustrate these challenges and how they might be met. Bergland et al. report evidence suggesting that the well‐known parallel latitudinal clines in North American and Australian D. melanogaster are confounded by admixture from Africa and Europe, highlighting the importance of distinguishing demographic from adaptive clines. In a companion study, Machado et al. provide the first genomic comparison of latitudinal differentiation in D. melanogaster and its sister species D. simulans. While D. simulans is less clinal than D. melanogaster, a significant fraction of clinal genes is shared between both species, suggesting the existence of convergent adaptation to clinaly varying selection pressures. Finally, by drawing on several independent sources of evidence, Bo?i?evi? et al. identify a functional network of eight clinal genes that are likely involved in cold adaptation. Together, these studies remind us that clinality does not necessarily imply selection and that separating adaptive signal from demographic noise requires great effort and care.  相似文献   

8.
How do organisms arrive on isolated islands, and how do insular evolutionary radiations arise? In a recent paper, Wilmé et al. ( 2016a ) argue that early Austronesians that colonized Madagascar from Southeast Asia translocated giant tortoises to islands in the western Indian Ocean. In the Mascarene Islands, moreover, the human‐translocated tortoises then evolved and radiated in an endemic genus (Cylindraspis). Their proposal ignores the broad, established understanding of the processes leading to the formation of native island biotas, including endemic radiations. We find Wilmé et al.'s suggestion poorly conceived, using a flawed methodology and missing two critical pieces of information: the timing and the specifics of proposed translocations. In response, we here summarize the arguments that could be used to defend the natural origin not only of Indian Ocean giant tortoises but also of scores of insular endemic radiations world‐wide. Reinforcing a generalist's objection, the phylogenetic and ecological data on giant tortoises, and current knowledge of environmental and palaeogeographical history of the Indian Ocean, make Wilmé et al.'s argument even more unlikely.  相似文献   

9.
Inferences of whole genome duplication (WGD) events accompany the annotation of every newly sequenced plant genome, but much remains unknown about the evolutionary processes and pathways relating to WGD (Soltis et al. 2010). What ecological, biogeographical and genetic factors cause WGD to occur in nature? How does WGD affect gene expression? How do genomes evolve after WGD? New species that have arisen recently through WGD are good places to seek answers to such questions. These could be relatively common in nature, but reliably demonstrating their recent origin requires documentary evidence, which can be very hard to come by. Thus far, records of species introductions and meticulous botanizing have demonstrated six new natural allopolyploids in just four genera: Tragopogon miscellus and T. mirus, Senecio cambrensis and S. eboracensis, Spartina anglica and Cardamine schultzii (Abbott & Rieseberg 2012; Ainouche et al. 2009; Soltis & Soltis 2009). It is risky to generalize about a universal feature of plant evolution from such a small sample; more examples are needed, in different genera. It is therefore of considerable interest that Mario Vallejo‐Marin of University of Stirling has this year named a new allopolyploid species of monkey flower, Mimulus peregrinus, and presented evidence that it is <140 years old (Vallejo‐Marin 2012). This discovery is particularly timely as the monkey flower genus is developing rapidly as a model system for ecological genetics (Wu et al. 2008), and in the current issue of Molecular Ecology, Jennifer Modliszewski and John Willis of Duke University present new data showing high genetic diversity in another recently discovered monkey flower allopolyploid, M. sookensis (Modliszewski & Willis 2012).  相似文献   

10.
What's in a species? The multiple connotations of the question tend to lack simple answers, and not surprisingly so. For example, speciation is a gradual process. Can we say when exactly a child has become an adult? We have precocious youngsters and late bloomers, and often, adults are in some ways childish. There are many triggers for and routes to adolescence. All this holds for speciation, and delimiting species can therefore be a tricky task. Recently, the field of integrative taxonomy has emerged—species delimitation based on multiple sources of evidence. Given that we expect species to exhibit peculiarities in at least one or a few aspects, might it be their alleles of a gene, their morphology, chemistry, behaviour, ecology, reproductive compatibility, or whatever, investigating not just one but several of these aspects makes it more likely that we capture such peculiarities. If the same pattern is found multiply, we talk about agreement among disciplines, and species delimitation is easy. But what if different disciplines tell different stories? Such disagreement makes species delimitation more difficult but is also an opportunity for evolutionary biology (Schlick‐Steiner et al. 2010). In this issue of Molecular Ecology, Andújar et al. (2014) present a comprehensive integrative‐taxonomic case study of Mesocarabus ground beetles including nomenclatural consequences. They resolve extensive disagreement among disciplines by invoking evolutionary explanations, and the process of conflict resolution thus advances knowledge on species boundaries and evolutionary processes simultaneously.  相似文献   

11.
Gould EA 《Molecular ecology》2012,21(5):1042-1047
Following the announcement of the first case of rabbit haemorrhagic disease (RHD) in a pet rabbit, housed indoors in Canada for more than 1 year, I submitted an evidence‐based explanation to ProMed explaining how RHD might have caused the death of ‘one’ of the three pet rabbits. I suggested with supporting evidence, that it may have been persistently infected with rabbit haemorrhagic disease virus (RHDV) which may have reactivated to cause the fatal disease. However, in this issue, Peacock et al. have proposed an alternative ‘hypothesis’ for the appearance of RHD in the pet rabbit. They hypothesise that a non‐identified insect or fomite might have become contaminated by a Chinese strain of RHDV somewhere in the US. This insect/fomite then flew or was windborne, from the US to Canada where it entered the house containing three pet rabbits and infected one of them. RHD is non‐endemic and is rarely reported in the US, where it has only been observed in domestic European rabbits, held in rabbitries. My proposal was based on the details provided by ProMed, the veterinary report from Canada, where RHDV has never previously been identified and the epidemiological, ecological and evolutionary history of RHDV which includes serological and phylogenetic evidence that ancestral RHDV lineages circulated before 1984. The flying insect hypothesis of Peacock et al. is based on circumstantial evidence and, I believe, has a lower probability of being correct than my evidence‐based long‐term infection proposal.  相似文献   

12.
In the mid‐20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of ‘circular overlaps’ or ‘ring species’ as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier, derived taxa within the ring display interactions typical of populations, such as genetic and morphological intergradation, while overlapping taxa at the terminus of the ring behave largely as sympatric, reproductively isolated species. Are ring species extremely rare or are they just difficult to detect? What conditions favour their formation? Modelling studies have attempted to address these knowledge gaps by estimating the biological parameters that result in stable ring species (Martins et al. 2013), and determining the necessary topographic parameters of the barriers encircled (Monahan et al. 2012). However, any generalization is undermined by a major limitation: only a handful of ring species are known to exist in nature. In addition, many of them have been broken into multiple species presumed to be evolving independently, usually obscuring the evolutionary dynamics that generate diversity. A paper in this issue of Molecular Ecology by Fuchs et al. (2015), focused on the entire genealogy of a bulbul (Alophoixus) species complex, offers key insights into the evolutionary processes underlying diversification of this Indo‐Malayan bird. Their findings fulfil most of the criteria that can be expected for ring species (Fig.  1 ): an ancestor has colonized the mainland from Sundaland, expanded along the forested habitat wrapping around Thailand's lowlands, adjacent taxa intergrade around the ring distribution, and terminal taxa overlap at the ring closure. Although it remains unclear whether ring divergence has resulted in restrictive gene flow relative to that observed around the ring, their results suggest that circular overlaps might be more common in nature than currently recognized in the literature. Most importantly, this work shows that the continuum of species formation that Mayr and Dobzhansky praised in circular overlaps is found in biological systems currently described as ‘rings of species’, in addition to the idealized ‘ring species’.  相似文献   

13.
Previous studies have indicated that average telomere length is partly inherited ( Slagboom et al., 1994 ; Rufer et al., 1999 ) and that there is an inherited telomere pattern in each cell ( Graakjaer et al., 2003 ); ( Londoño‐Vallejo et al., 2001 ). In this study, we quantify the importance of the initially inherited telomere lengths within cells, in relation to other factors that influence telomere length during life. We have estimated the inheritance by measuring telomere length in monozygotic (MZ) twins using Q‐FISH with a telomere specific peptide nucleic acid (PNA)‐probe. Homologous chromosomes were identified using subtelomeric polymorphic markers. We found that identical homologous telomeres from two aged MZ twins show significantly less differences in relative telomere length than when comparing the two homologues within one individual. This result means that towards the end of life, individual telomeres retain the characteristic relative length they had at the outset of life and that any length alteration during the lifespan impacts equally on genetically identical homologues. As the result applies across independent individuals, we conclude that, at least in lymphocytes, epigenetic/environmental effects on relative telomere length are relatively minor during life.  相似文献   

14.
Ecological observations were made on house dust mites of Kolkata as they form a major part of synanthropic mite community. Dust samples were collected with regard to the abundance of mite in relation to certain socio-ecological parameters like, habitat preference, location of house, construction pattern of house, types of mattresses used and the frequency of cleaning of mattresses. Among two different habitats examined, bed dust contained significantly higher mite population (p < 0.01) than the corresponding bedroom floor dust. The density of total mites and glycyphagids are significantly higher in rural houses in comparison to those of urban houses. In contrast, rural houses contained least number of pyroglyphids/g of dust. The density of total mites as well as pyroglyphid mites/g of dust are higher in mud house in comparison to concrete house. The density of total mites, pyroglyphids and glycyphagids are higher in cotton mattress in comparison to that of foam mattress. The frequency of cleaning has a significant effect on reducing mite densities i.e., the more the frequency of cleaning the lesser are the mite densities.  相似文献   

15.
Whether the potential costs associated with broad‐scale use of genetically modified organisms (GMOs) outweigh possible benefits is highly contentious, including within the scientific community. Even among those generally in favour of commercialization of GM crops, there is nonetheless broad recognition that transgene escape into the wild should be minimized. But is it possible to achieve containment of engineered genetic elements in the context of large scale agricultural production? In a previous study, Warwick et al. (2003) documented transgene escape via gene flow from herbicide resistant (HR) canola (Brassica napus) into neighbouring weedy B. rapa populations ( Fig. 1 ) in two agricultural fields in Quebec, Canada. In a follow‐up study in this issue of Molecular Ecology, Warwick et al. (2008) show that the transgene has persisted and spread within the weedy population in the absence of selection for herbicide resistance. Certainly a trait like herbicide resistance is expected to spread when selected through the use of the herbicide, despite potentially negative epistatic effects on fitness. However, Warwick et al.'s findings suggest that direct selection favouring the transgene is not required for its persistence. So is there any hope of preventing transgene escape into the wild?
Figure 1 Open in figure viewer PowerPoint Weedy Brassica rapa (orange flags) growing in a B. napus field. (Photo: MJ Simard)  相似文献   

16.
Understanding the molecular events of reproduction requires a system to differentiate human pluripotent stem cells to germline cells (gametes) in vitro. Such a system is not only critical to unlock the secrets of germline development; it may also allow screening for environmental agents that affect gametogenesis. Two recent papers, one in this issue of The EMBO Journal, have developed complementary approaches for generating human germline cells with unprecedented efficiency from pluripotent stem cells (Sugawa et al, 2015; Irie et al, 2015). This work illustrates the power and limitations of extrapolating molecular pathways for lineage differentiation from mice to humans and illuminates the importance of using human cell‐based models to study reproductive health.  相似文献   

17.
Nicola Nadeau 《Molecular ecology》2014,23(18):4441-4443
How common is hybridization between species and what effect does it have on the evolutionary process? Can hybridization generate new species and what indeed is a species? In this issue, Gompert et al. (2014) show how massive, genome‐scale data sets can be used to shed light on these questions. They focus on the Lycaeides butterflies, and in particular, several populations from the western USA, which have characteristics suggesting that they may contain hybrids of two or more different species (Gompert et al. 2006). They demonstrate that these populations do contain mosaic genomes made up of components from different parental species. However, this appears to have been largely driven by historical admixture, with more recent processes appearing to be isolating the populations from each other. Therefore, these populations are on their way to becoming distinct species (if they are not already) but have arisen following extensive hybridization between other distinct populations or species (Fig.  1 ).
Figure 1 Open in figure viewer PowerPoint There has been extensive historical admixture between Lycaeides species with some new species arising from hybrid populations. (Photo credits: Lauren Lucas, Chris Nice, and James Fordyce).
Their data set must be one of the largest outside of humans, with over one and half thousand butterflies genotyped at over 45 thousand variable nucleotide positions. It is this sheer amount of data that has allowed the researchers to distinguish between historical and more recent evolutionary and demographic processes. This is because it has allowed them to partition the data into common and rare genetic variants and perform separate analyses on these. Common genetic variants are likely to be older while rare variants are more likely to be due to recent mutations. Therefore, by splitting the genetic variation into these components, the researchers were able to show more admixture among common variants, while rare variants showed less admixture and clear separation of the populations. The extensive geographic sampling of individuals, including overlapping distributions of several of the putative species, also allowed the authors to rule out the possibility that the separation of the populations was simply due to geographical distance. The authors have developed a new programme for detecting population structure and admixture, which does the same job as STRUCTURE (Pritchard et al. 2000 ), identifying genetically distinct populations and admixture between these populations, but is designed to be used with next generation sequence data. They use the output of this model for another promising new method to distinguish between contemporary and historical admixtures. They fixed the number of source populations in the model at two and estimated the proportion of each individual's genome coming from these two populations. Therefore, an individual can either be purely population 1, or population 2 or some mixture of the two (they call this value q, the same parameter exists in STRUCTURE). They then compared this to the level of heterozygosity coming from the two source populations in the individual's genome. If an individual is an F1 hybrid of two source populations, then it would have a q of 0.5 and also be heterozygous at all loci that distinguish the parental populations. On the other hand, if it is a member of a stable hybrid lineage, it might also have a q of 0.5 but would not be expected to be heterozygous at these loci, because over time the population would become fixed for one or other of the source population states either by drift or selection (Fig.  2 ). This is indeed what they find in the hybrid populations. They tend to have intermediate q values, but the level of heterozygosity coming from the source populations (which they call Q12) was consistently lower than expected.
Figure 2 Open in figure viewer PowerPoint The Q‐matrix analysis used by Gompert et al. ( 2014 ) to distinguish between contemporary (hybrid swarm) and historical (stable hybrid lineage) admixture.
Overall, the results support several of the populations as being stable hybrid lineages. Nevertheless, the strictest definitions of hybrid species specify that the process of hybridization between the parental species must be instrumental in driving the reproductive isolation of the new species from both parental populations (Abbott et al. 2013 ). This is extremely hard to demonstrate conclusively because it requires us to first of all identify the isolating mechanisms that operated in the early evolution of the species and then to show that these were caused by the hybridization event itself. One advantage of the Lycaeides system is that the species appear to be in the early stages of divergence, so barriers to gene flow that are operating currently are likely to be those that are driving the species divergence. While there is some evidence that hybridization gave rise to traits that allowed the new populations to colonize new environments (Gompert et al. 2006 ; Lucas et al. 2008 ), there is clearly further work to be carried out in this direction. One of the rare examples of homoploid hybrid speciation (hybrid speciation without a change in chromosome number) where the reproductive isolation criterion has been demonstrated, comes from the Heliconius butterflies. In this case, hybridization of two species has been shown to give rise to a new colour pattern that instantly becomes reproductively isolated from the parental species due to mate preference for that pattern (Mavárez et al. 2006 ). However, while this has become a widely accepted example (Abbott et al. 2013 ), the naturally occurring ‘hybrid species’ in fact has derived most of its genome from one of the parental species, with largely just the colour pattern controlling locus coming from the other parent, a process that has been termed ‘hybrid trait speciation’ (Salazar et al. 2010 ). This distinction is an important one in terms of our understanding of the organization of biological diversity. While hybrid trait speciation will still largely fit the model of a neatly branching evolutionary tree, with perhaps only the region surrounding the single introgressed gene deviating from this model, hybrid species that end up with mosaic genomes, like Lycaeides, will not fit this model when considering the genome as a whole. This distinction also more broadly applies when comparing the patterns of divergence between Heliconius and Lycaeides. These two butterfly genera have been driving forward our understanding of the prevalence and importance of hybridization at the genomic level, but they reveal different ways in which hybridization can influence the organization of biological diversity. Recent work in Heliconius has shown that admixture is extensive and has been ongoing over a large portion of the evolutionary history of species (Martin et al. 2013 ; Nadeau et al. 2013 ). Nevertheless, this has not obscured the clear and robust pattern of a bifurcating evolutionary tree when considering the genome as a whole (Nadeau et al. 2013 ). In contrast in Lycaeides, the genome‐wide phylogeny clearly does not fit a bifurcating tree, resembling more of a messy shrub, with hybrid taxa falling at intermediate positions on the phylogeny (Gompert et al. 2014 ). The extent to which we need to rethink the way we describe and organize biological diversity will depend on the relative prevalence of these different outcomes of hybridization. We are likely to see many more of these types of large sequence data sets for ecologically interesting organisms. Gompert et al. ( 2014 ) show that these data need not only be a quantitative advance, but can also qualitatively change our understanding of the evolutionary history of these organisms. In particular, analysing common and rare genetic variants separately may provide information that would otherwise be missed. The emerging field of ‘speciation genomics’ (Seehausen et al. 2014 ) should follow this lead in developing new ways of making the most of the flood of genomic data that is being generated, but also improve methods for integrating this with field observations and experiments to identify the sources and targets of selection and divergence.

References

  • Abbott R , Albach D , Ansell S et al. (2013 ) Hybridization and speciation . Journal of Evolutionary Biology, 26 , 229 – 246 . Wiley Online Library CAS PubMed Web of Science® Google Scholar
  • Gompert Z , Fordyce JA , Forister ML , Shapiro AM , Nice CC (2006 ) Homoploid hybrid speciation in an extreme habitat . Science, 314 , 1923 – 1925 . Crossref CAS PubMed Web of Science® Google Scholar
  • Gompert Z , Lucas LK , Buerkle CA et al. (2014 ) Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants . Molecular Ecology, 23 , 4555 – 4573 . Wiley Online Library CAS PubMed Web of Science® Google Scholar
  • Lucas LK , Fordyce JA , Nice CC (2008 ) Patterns of genitalic morphology around suture zones in North American Lycaeides (Lepidoptera: Lycaenidae): implications for taxonomy and historical biogeography . Annals of the Entomological Society of America, 101 , 172 – 180 . Crossref Web of Science® Google Scholar
  • Martin SH , Dasmahapatra KK , Nadeau NJ et al. (2013 ) Genome‐wide evidence for speciation with gene flow in Heliconius butterflies . Genome Research, 23 , 1817 – 1828 . Crossref CAS PubMed Web of Science® Google Scholar
  • Mavárez J , Salazar CA , Bermingham E et al. (2006 ) Speciation by hybridization in Heliconius butterflies . Nature, 441 , 868 – 871 . Crossref CAS PubMed Web of Science® Google Scholar
  • Nadeau NJ , Martin SH , Kozak KM et al. (2013 ) Genome‐wide patterns of divergence and gene flow across a butterfly radiation . Molecular Ecology, 22 , 814 – 826 . Wiley Online Library CAS PubMed Web of Science® Google Scholar
  • Pritchard JK , Stephens M , Donnelly P (2000 ) Inference of population structure using multilocus genotype data . Genetics, 155 , 945 – 959 . Wiley Online Library CAS PubMed Web of Science® Google Scholar
  • Salazar C , Baxter SW , Pardo‐Diaz C et al. (2010 ) Genetic evidence for hybrid trait speciation in Heliconius butterflies . PLoS Genetics, 6 , e1000930 . Crossref CAS PubMed Web of Science® Google Scholar
  • Seehausen O , Butlin RK , Keller I et al. (2014 ) Genomics and the origin of species . Nature Reviews Genetics, 15 , 176 – 192 . Crossref CAS PubMed Web of Science® Google Scholar
This article was written and figures prepared by N.N. except as specified in the text (photo credits).

    Citing Literature

    Number of times cited according to CrossRef: 4

    • V. Alex Sotola, David S. Ruppel, Timothy H. Bonner, Chris C. Nice, Noland H. Martin, Asymmetric introgression between fishes in the Red River basin of Texas is associated with variation in water quality, Ecology and Evolution, 10.1002/ece3.4901, 9 , 4, (2083-2095), (2019). Wiley Online Library
    • Matej Bocek, Dominik Kusy, Michal Motyka, Ladislav Bocak, Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles, Frontiers in Zoology, 10.1186/s12983-019-0335-8, 16 , 1, (2019). Crossref
    • Nicola J. Nadeau, Takeshi Kawakami, Population Genomics of Speciation and Admixture, , 10.1007/13836_2018_24, (2018). Crossref
    • Amanda Roe, Julian Dupuis, Felix Sperling, Molecular Dimensions of Insect Taxonomy in the Genomics Era, Insect Biodiversity, 10.1002/9781118945568, (547-573), (2017). Wiley Online Library

    Volume 23 , Issue 18 September 2014

    Pages 4441-4443  相似文献   


    18.
    Evelyn Blackwood 《Ethnos》2013,78(1):32-56
    The big house is a potent symbol of rural Minangkabau life, embodying the centrality of Minangkabau women to the continuity and reproduction of the matrilineage. But big houses are not simply sites of social reproduction. Mothers and daughters negotiate and contest the ties of kinship embodied in the big house. Where big houses represented mother's power to control their daughters, national discourses of domesticity have reoriented daughters’ desires toward a house of their own. Daughters assert the importance of their own nuclear households as a way to resist their mother's control. Yet daughters have not become the housewives and mothers of national fantasy. They are reworking matrilineal ideology to gain the right to control their own small houses, ultimately reconstituting big houses in new forms.  相似文献   

    19.
    Aims: Microbial concentrations in vacuumed house dust samples (n = 71) were analysed by culture and quantitative polymerase chain reaction (qPCR) methods and their association with extent of moisture damage in the house was studied. Methods and Results: Microbial concentrations measured by qPCR correlated with concentrations obtained by culture method, but were orders of magnitude higher. qPCR also had better sensitivity. Concentrations of several microbes in house dust, determined with qPCR, were associated with the extent of moisture damage in the house. This association was strongest for Penicillium brevicompactum, one of the fungi detected in highest concentrations by qPCR. Furthermore, house dust concentrations of Wallemia sebi, Trichoderma viride, Cladosporium sphaerospermum, Eurotium amstelodami and the combined assay group for Penicillium spp., Aspergillus spp. and Paecilomyces variotii were significantly associated with the extent of the moisture damage. Conclusion: These species or assay groups could probably be used as indicators of moisture damage in the house. Significance and Impact of the Study: This finding indicates the benefits of the qPCR method, which is sensitive enough to reveal the differences in microbial concentrations of house dust between moisture‐damaged and undamaged houses.  相似文献   

    20.
    Aspergillus/Penicillium spore concentrations have been monitored in Derby since 1970 using a volumetric spore trap, with full year data from 1991. In addition a short comparative study with the indoor air was undertaken at two local houses in 1994 and 1996. Aspergillus/Penicillium spores were present in the Derby air throughout the year and often reached maximum monthly cumulative concentrations in the autumn, although they were occasionally the dominant spores in the winter when total spore concentrations were low. Very high daily concentrations could occur at any time of year with a count of over 5000 recorded. Peak days in the autumn and winter of 2002–2003 were examined on a two hourly basis showing higher concentrations in the middle of the day. There was a positive correlation of cumulative monthly Aspergillus/Penicillium totals with maximum temperature. Indoor data from the two houses was examined on a daily basis and compared with simultaneously sampled outdoor daily spore concentrations. The elevated Aspergillus/Penicillium spore levels found in the older of the two houses occurred on all of the days sampled. Compared to the modern house, the Aspergillus/Penicillium spore concentrations in the old house represented a much higher percentage of the total spore count than in the modern one. The correlation between outdoor Aspergillus/Penicilliumspore concentrations and the indoor air of the old house was 0.62, whereas in the modern house it was 0.31. Peak hourly samples of Aspergillus/Penicillium spore counts occurred at times of greatest activity.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号