首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome‐wide markers to investigate the diversification of the Reunion grey white‐eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping‐by‐sequencing and pooled RAD‐seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z‐linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.  相似文献   

2.
Hybrid zones allow the measurement of gene flow across the genome, producing insight into the genomic architecture of speciation. Such analysis is particularly powerful when applied to multiple pairs of hybridizing species, as patterns of genomic differentiation can then be related to age of the hybridizing species, providing a view into the build‐up of differentiation over time. We examined 33 809 single nucleotide polymorphisms (SNPs) in three hybridizing woodpecker species: Red‐breasted, Red‐naped and Yellow‐bellied sapsuckers (Sphyrapicus ruber, Sphyrapicus nuchalis and Sphyrapicus varius), two of which (ruber and nuchalis) are much more closely related than each is to the third (varius). To identify positions of SNPs on chromosomes, we developed a localization method based on comparative genomics. We found narrow clines, bimodal distributions of hybrid indices and genomic regions with decreased rates of introgression. These results suggest moderately strong reproductive isolation among species and selection against specific hybrid genotypes. We found 19 small regions of strong differentiation between species, partly shared among species pairs, but no large regions of differentiation. An association analysis revealed a single strong‐effect candidate locus associated with plumage, possibly explaining mismatch among the three species in genomic relatedness and plumage similarity. Our comparative analysis of species pairs of different age and their hybrid zones showed that moderately strong reproductive isolation can occur with little genomic differentiation, but that reproductive isolation is incomplete even with much greater genomic differentiation, implying there are long periods of time when hybridization is possible if diverging populations are in geographic contact.  相似文献   

3.
Morphological traits have served generations of biologists as a taxonomic indicator, and have been the main basis for defining and classifying species diversity for centuries. A quantitative integration of behavioural characters, such as vocalizations, in studies on biotic differentiation has arisen more recently, and the relative importance of these different traits in the diversification process remains poorly understood. To provide a framework within which to interpret the evolutionary interplay between morphological and behavioural traits, we generated a draft genome of a cryptic Southeast Asian songbird, the limestone wren‐babbler Napothera crispifrons. We resequenced whole genomes of multiple individuals of all three traditional subspecies and of a distinct leucistic population. We demonstrate strong genomic and mitochondrial divergence among all three taxa, pointing to the existence of three species‐level lineages. Despite its great phenotypic distinctness, the leucistic population was characterized by shallow genomic differentiation from its neighbour, with only a few localized regions emerging as highly diverged. Quantitative bioacoustic analysis across multiple traits revealed deep differences especially between the two taxa characterized by limited plumage differentiation. Our study demonstrates that differentiation in these furtive songbirds has resulted in a complex mosaic of colour‐based and bioacoustic differences among populations. Extreme colour differences can be anchored in few genomic loci and may therefore arise and subside rapidly.  相似文献   

4.
The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor–derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.  相似文献   

5.
A major goal of molecular ecology is to identify the causes of genetic and phenotypic differentiation among populations. Population genomics is suitably poised to tackle these key questions by diagnosing the evolutionary mechanisms driving divergence in nature. Here, we set out to investigate the evolutionary processes underlying population differentiation in the Gulf pipefish, Syngnathus scovelli. We sampled approximately 50 fish from each of 12 populations distributed from the Gulf coast of Texas to the Atlantic coast of Florida and performed restriction‐site‐associated DNA sequencing to identify SNPs throughout the genome. After imposing quality and stringency filters, we selected a panel of 6348 SNPs present in all 12 populations, 1753 of which were not physically linked. We identified a genome‐wide pattern of isolation by distance, in addition to a more substantial genetic break separating populations in the Gulf of Mexico from those in the Atlantic. We also used several divergence outlier approaches and tests for genotype–environment correlations to identify 400 SNPs putatively involved in local adaptation. Patterns of phenotypic differentiation and variation diverged from the overall genomic pattern, suggesting that selection, phenotypic plasticity or demographic factors may be shaping phenotypes in distinct populations. Overall, our results suggest that population divergence is driven by a variety of factors in S. scovelli, including neutral processes and selection on multiple traits.  相似文献   

6.
Natural systems composed of closely related taxa that vary in the degree of phenotypic divergence and geographic isolation provide an opportunity to investigate the rate of phenotypic diversification and the relative roles of selection and drift in driving lineage formation. The genus Junco (Aves: Emberizidae) of North America includes parapatric northern forms that are markedly divergent in plumage pattern and colour, in contrast to geographically isolated southern populations in remote areas that show moderate phenotypic divergence. Here, we quantify patterns of phenotypic divergence in morphology and plumage colour and use mitochondrial DNA genes, a nuclear intron, and genomewide SNPs to reconstruct the demographic and evolutionary history of the genus to infer relative rates of evolutionary divergence among lineages. We found that geographically isolated populations have evolved independently for hundreds of thousands of years despite little differentiation in phenotype, in sharp contrast to phenotypically diverse northern forms, which have diversified within the last few thousand years as a result of the rapid postglacial recolonization of North America. SNP data resolved young northern lineages into reciprocally monophyletic lineages, indicating low rates of gene flow even among closely related parapatric forms, and suggesting a role for strong genetic drift or multifarious selection acting on multiple loci in driving lineage divergence. Juncos represent a compelling example of speciation in action, where the combined effects of historical and selective factors have produced one of the fastest cases of speciation known in vertebrates.  相似文献   

7.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

8.
Studying recent adaptive radiations in isolated insular systems avoids complicating causal events and thus may offer clearer insight into mechanisms generating biological diversity. Here, we investigate evolutionary relationships and genomic differentiation within the recent radiation of Alcolapia cichlid fish that exhibit extensive phenotypic diversification, and which are confined to the extreme soda lakes Magadi and Natron in East Africa. We generated an extensive RAD data set of 96 individuals from multiple sampling sites and found evidence for genetic admixture between species within Lake Natron, with the highest levels of admixture between sympatric populations of the most recently diverged species. Despite considerable environmental separation, populations within Lake Natron do not exhibit isolation by distance, indicating panmixia within the lake, although individuals within lineages clustered by population in phylogenomic analysis. Our results indicate exceptionally low genetic differentiation across the radiation despite considerable phenotypic trophic variation, supporting previous findings from smaller data sets; however, with the increased power of densely sampled SNPs, we identify genomic peaks of differentiation (FST outliers) between Alcolapia species. While evidence of ongoing gene flow and interspecies hybridization in certain populations suggests that Alcolapia species are incompletely reproductively isolated, the identification of outlier SNPs under diversifying selection indicates the radiation is undergoing adaptive divergence.  相似文献   

9.
Disentangling the processes and mechanisms underlying adaptive diversification is facilitated by the comparative study of replicate population pairs that have diverged along a similar environmental gradient. Such a setting is realized in a cichlid fish from southern Lake Tanganyika, Astatotilapia burtoni, which occurs within the lake proper as well as in various affluent rivers. Previously, we demonstrated that independent lake and stream populations show similar adaptations to the two habitat regimes. However, little is known about the evolutionary and demographic history of the A. burtoni populations in question and the patterns of genome divergence among them. Here, we apply restriction site‐associated DNA sequencing (RADseq) to examine the evolutionary history, the population structure and genomic differentiation of lake and stream populations in A. burtoni. A phylogenetic reconstruction based on genome‐wide molecular data largely resolved the evolutionary relationships among populations, allowing us to re‐evaluate the independence of replicate lake–stream population clusters. Further, we detected a strong pattern of isolation by distance, with baseline genomic divergence increasing with geographic distance and decreasing with the level of gene flow between lake and stream populations. Genome divergence patterns were heterogeneous and inconsistent among lake‐stream population clusters, which is explained by differences in divergence times, levels of gene flow and local selection regimes. In line with the latter, we only detected consistent outlier loci when the most divergent lake–stream population pair was excluded. Several of the thus identified candidate genes have inferred functions in immune and neuronal systems and show differences in gene expression between lake and stream populations.  相似文献   

10.
11.
Homoploid hybrid speciation (HHS) requires reproductive barriers between hybrid and parent species, despite incomplete reproductive isolation (RI) between the parents. Novel secondary sexual trait values in hybrids may cause prezygotic isolation from both parents, whereas signals inherited by the hybrid from one parent species may cause prezygotic isolation with the other. Here we investigate whether differences in male plumage function as a premating barrier between the hybrid Italian sparrow and one of its parent species, the house sparrow, in a narrow Alpine hybrid zone. Italian sparrow male plumage is a composite mosaic of the parental traits, with its head plumage most similar to its other parent, the Spanish sparrow. We use geographical cline analysis to examine selection on three plumage traits, 75 nuclear single nucleotide polymorphisms (SNPs) and hybrid indices based on these SNPs. Several SNPs showed evidence of restricted introgression in the Alps, supporting earlier findings. Crown colour exhibited the narrowest plumage cline, representing a 37% (range 4–65%) drop in fitness. The cline was too narrow to be due to neutral introgression. Only crown colour was significantly bimodal in the hybrid zone. Bimodality may be due to RI or a major QTL, although fitness estimates suggest that selection contributes to the pattern. We discuss the implications with respect to HHS and the species status of the Italian sparrow.  相似文献   

12.
Ecological speciation, driven by adaptation to contrasting environments, provides an attractive opportunity to study the formation of distinct species, and the role of selection and genomic divergence in this process. Here, we focus on a particularly clear‐cut case of ecological speciation to reveal the genomic bases of reproductive isolation and morphological differences between closely related Senecio species, whose recent divergence within the last ~200 000 years was likely driven by the uplift of Mt. Etna (Sicily). These species form a hybrid zone, yet remain morphologically and ecologically distinct, despite active gene exchange. Here, we report a high‐density genetic map of the Senecio genome and map hybrid breakdown to one large and several small quantitative trait loci (QTL). Loci under diversifying selection cluster in three 5 cM regions which are characterized by a significant increase in relative (FST), but not absolute (dXY), interspecific differentiation. They also correspond to some of the regions of greatest marker density, possibly corresponding to ‘cold‐spots’ of recombination, such as centromeres or chromosomal inversions. Morphological QTL for leaf and floral traits overlap these clusters. We also detected three genomic regions with significant transmission ratio distortion (TRD), possibly indicating accumulation of intrinsic genetic incompatibilities between these recently diverged species. One of the TRD regions overlapped with a cluster of high species differentiation, and another overlaps the large QTL for hybrid breakdown, indicating that divergence of these species may have occurred due to a complex interplay of ecological divergence and accumulation of intrinsic genetic incompatibilities.  相似文献   

13.
The spruce budworm, Choristoneura fumiferana, is presumed to be panmictic across vast regions of North America. We examined the extent of panmixia by genotyping 3,650 single nucleotide polymorphism (SNP) loci in 1975 individuals from 128 collections across the continent. We found three spatially structured subpopulations: Western (Alaska, Yukon), Central (southeastern Yukon to the Manitoba–Ontario border), and Eastern (Manitoba–Ontario border to the Atlantic). Additionally, the most diagnostic genetic differentiation between the Central and Eastern subpopulations was chromosomally restricted to a single block of SNPs that may constitute an island of differentiation within the species. Geographic differentiation in the spruce budworm parallels that of its principal larval host, white spruce (Picea glauca), providing evidence that spruce budworm and spruce trees survived in the Beringian refugium through the Last Glacial Maximum and that at least two isolated spruce budworm populations diverged with spruce/fir south of the ice sheets. Gene flow in the spruce budworm may also be affected by mountains in western North America, habitat isolation in West Virginia, regional adaptations, factors related to dispersal, and proximity of other species in the spruce budworm species complex. The central and eastern geographic regions contain individuals that assign to Eastern and Central subpopulations, respectively, indicating that these barriers are not complete. Our discovery of previously undetected geographic and genomic structure in the spruce budworm suggests that further population modelling of this ecologically important insect should consider regional differentiation, potentially co‐adapted blocks of genes, and gene flow between subpopulations.  相似文献   

14.
Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine–freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome‐wide SNP data sets hold for resolving patterns and processes underlying recent adaptive divergences.  相似文献   

15.
Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced‐complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over‐represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini ‐ the largest radiation of mimetic butterflies.  相似文献   

16.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

17.
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost‐effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre‐ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.  相似文献   

18.
Next‐generation sequencing has made it possible to begin asking questions about the process of divergence at the level of the genome. For example, recently, there has been a debate around the role of ‘genomic islands of divergence’ (i.e. blocks of outlier loci) in facilitating the process of speciation‐with‐gene‐flow. The Swainson's thrush, Catharus ustulatus, is a migratory songbird with two genetically distinct subspecies that differ in a number of traits known to be involved in reproductive isolation in birds (plumage coloration, song and migratory behaviour), despite contemporary gene flow along a secondary contact zone. Here, we use RAD‐PE sequencing to test emerging hypotheses about the process of divergence at the level of the genome and identify genes and gene regions involved in differentiation in this migratory songbird. Our analyses revealed distinct genomic islands on 15 of the 23 chromosomes and an accelerated rate of divergence on the Z chromosome, one of the avian sex chromosomes. Further, an analysis of loci linked to traits known to be involved in reproductive isolation in songbirds showed that genes linked to migration are significantly more differentiated than expected by chance, but that these genes lie primarily outside the genomic islands. Overall, our analysis supports the idea that genes linked to migration play an important role in divergence in migratory songbirds, but we find no compelling evidence that the observed genomic islands are facilitating adaptive divergence in migratory behaviour.  相似文献   

19.
Understanding the origin of new species is a central goal in evolutionary biology. Diverging lineages often evolve highly heterogeneous patterns of genetic differentiation; however, the underlying mechanisms are not well understood. We investigated evolutionary processes governing genetic differentiation between the hybridizing campions Silene dioica (L.) Clairv. and S. latifolia Poiret. Demographic modelling indicated that the two species diverged with gene flow. The best‐supported scenario with heterogeneity in both migration rate and effective population size suggested that a small proportion of the loci evolved without gene flow. Differentiation (F ST) and sequence divergence (d XY) were correlated and both tended to peak in the middle of most linkage groups, consistent with reduced gene flow at highly differentiated loci. Highly differentiated loci further exhibited signatures of selection. In between‐species population pairs, isolation by distance was stronger for genomic regions with low between‐species differentiation than for highly differentiated regions that may contain barrier loci. Moreover, differentiation landscapes within and between species were only weakly correlated, suggesting that linked selection due to shared recombination and gene density landscapes is not the dominant determinant of genetic differentiation in these lineages. Instead, our results suggest that divergent selection shaped the genomic landscape of differentiation between the two Silene species, consistent with predictions for speciation in the face of gene flow.  相似文献   

20.
Genetic differentiation between three populations of the pied flycatcher Ficedula hypoleuca (Norway, Czech Republic and Spain, respectively) was investigated at microsatellite loci and mitochondrial DNA (mtDNA) sequences and compared with the pattern of differentiation of male plumage colour. The Czech population lives sympatrically with the closely related collared flycatcher (F. albicollis) whereas the other two are allopatric. Allopatric populations are on average more conspicuously coloured than sympatric ones, a pattern that has been explained by sexual selection for conspicuous colour in allopatry and a character displacement on breeding plumage colour in sympatry that reduces the rate of hybridization with the collared flycatcher. The Czech population was genetically indistinguishable from the Norwegian population at microsatellite loci and mtDNA sequences. Recent isolation and/or gene flow may explain the lack of genetic differentiation. Accordingly, different selection on plumage colour in the two populations is either sufficiently strong so that gene flow has little impact on the pattern of colour variation, or differentiation of plumage colour occurred so recently that the (presumably) neutral, fast evolving markers employed here are unable to reflect the differentiation. Genetically, the Spanish population was significantly differentiated from the other populations, but the divergence was much more pronounced at mtDNA compared to microsatellites. This may reflect increased rate of differentiation by genetic drift at the mitochondrial, compared with the nuclear genome, caused by the smaller effective population size of the former genome. In accordance with this interpretation, a genetic pattern consistent with effects of small population size in the Spanish population (genetic drift and inbreeding) were also apparent at the microsatellites, namely reduced allelic diversity and heterozygous deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号