首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The evolution of sociality in spiders is associated with female bias, reproductive skew and an inbreeding mating system, factors that cause a reduction in effective population size and increase effects of genetic drift. These factors act to decrease the effectiveness of selection, thereby increasing the fixation probability of deleterious mutations. Comparative studies of closely related species with contrasting social traits and mating systems provide the opportunity to test consequences of low effective population size on the effectiveness of selection empirically. We used phylogenetic analyses of three inbred social spider species and seven outcrossing subsocial species of the genus Stegodyphus, and compared dN/dS ratios and codon usage bias between social Inbreeding and subsocial outcrossing mating systems to assess the effectiveness of selection. The overall results do not differ significantly between the social inbreeding and outcrossing species, but suggest a tendency for lower codon usage bias and higher dN/dS ratios in the social inbreeding species compared with their outcrossing congeners. The differences in dN/dS ratio and codon usage bias between social and subsocial species are modest but consistent with theoretical expectations of reduced effectiveness of selection in species with relatively low effective population size. The modest differences are consistent with relatively recent evolution of social mating systems. Additionally, the short terminal branches and lack of speciation of the social lineages, together with low genetic diversity lend support for the transient state of permanent sociality in spiders.  相似文献   

2.
Information on the genetic structure of animal populations can allow inferences about mechanisms shaping their social organization, dispersal, and mating system. The mongooses (Herpestidae) include some of the best‐studied mammalian systems in this respect, but much less is known about their closest relatives, the Malagasy carnivores (Eupleridae), even though some of them exhibit unusual association patterns. We investigated the genetic structure of the Malagasy narrow‐striped mongoose (Mungotictis decemlineata), a small forest‐dwelling gregarious carnivore exhibiting sexual segregation. Based on mtDNA and microsatellite analyses, we determined population‐wide haplotype structure and sex‐specific and within‐group relatedness. Furthermore, we analyzed parentage and sibship relationships and the level of reproductive skew. We found a matrilinear population structure, with several neighboring female units sharing identical haplotypes. Within‐group female relatedness was significantly higher than expected by chance in the majority of units. Haplotype diversity of males was significantly higher than in females, indicating male‐biased dispersal. Relatedness within the majority of male associations did not differ from random, not proving any kin‐directed benefits of male sociality in this case. We found indications for a mildly promiscuous mating system without monopolization of females by males, and low levels of reproductive skew in both sexes based on parentages of emergent young. Low relatedness within breeding pairs confirmed immigration by males and suggested similarities with patterns in social mongooses, providing a starting point for further investigations of mate choice and female control of reproduction and the connected behavioral mechanisms. Our study contributes to the understanding of the determinants of male sociality in carnivores as well as the mechanisms of female competition in species with small social units.  相似文献   

3.
The consequences of population subdivision and inbreeding have been studied in many organisms, particularly in plants. However, most studies focus on the short‐term consequences, such as inbreeding depression. To investigate the consequences of both population fragmentation and inbreeding for genetic variability in the longer term, we here make use of a natural inbreeding experiment in spiders, where sociality and accompanying population subdivision and inbreeding have evolved repeatedly. We use mitochondrial and nuclear data to infer phylogenetic relationships among 170 individuals of Anelosimus spiders representing 23 species. We then compare relative mitochondrial and nuclear genetic variability of the inbred social species and their outbred relatives. We focus on four independently derived social species and four subsocial species, including two outbred–inbred sister species pairs. We find that social species have 50% reduced mitochondrial sequence divergence. As inbreeding is not expected to reduce genetic variability in the maternally inherited mitochondrial genome, this suggests the loss of variation due to strong population subdivision, founder effects, small effective population sizes (colonies as individuals) and lineage turnover. Social species have < 10% of the nuclear genetic variability of the outbred species, also suggesting the loss of genetic variability through founder effects and/or inbreeding. Inbred sociality hence may result in reduction in variability through various processes. Sociality in most Anelosimus species probably arose relatively recently (0.1–2 mya), with even the oldest social lineages having failed to diversify. This is consistent with the hypothesis that inbred spider sociality represents an evolutionary dead end. Heterosis underlies a species potential to respond to environmental change and/or disease. Inbreeding and loss of genetic variability may thus limit diversification in social Anelosimus lineages and similarly pose a threat to many wild populations subject to habitat fragmentation or reduced population sizes.  相似文献   

4.
Cooperation and group living are extremely rare in spiders and only few species are known to be permanently social. Inbreeding is a key characteristic of social spiders, resulting in high degrees of within‐colony relatedness that may foster kin‐selected benefits of cooperation. Accordingly, philopatry and regular inbreeding are suggested to play a major role in the repeated independent origins of sociality in spiders. We conducted field observations and laboratory experiments to investigate the mating system of the subsocial spider Stegodyphus tentoriicola. The species is suggested to resemble the ‘missing link’ in the transition from subsociality to permanent sociality in Stegodyphus spiders because its social period is prolonged in comparison to other subsocial species. Individuals in our two study populations were spatially clustered around maternal nests, indicating that clusters consist of family groups as found in the subsocial congener Stegodyphus lineatus. Male mating dispersal was limited and we found no obvious pre‐copulatory inbreeding avoidance, suggesting a high likelihood of mating with close kin. Rates of polygamy were low, a pattern ensuring high relatedness within broods. In combination with ecological constraints, such as high costs of dispersal, our findings are consistent with the hypothesis that the extended social period in S. tentoriicola is accompanied with adaptations that facilitate the transition towards permanent sociality. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 851–859.  相似文献   

5.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

6.
Kin associations increase the potential for inbreeding. The potential for inbreeding does not, however, make inbreeding inevitable. Numerous factors influence whether inbreeding preference, avoidance, or tolerance evolves, and, in hermaphrodites where both self‐fertilization and biparental inbreeding are possible, it remains particularly difficult to predict how selection acts on the overall inbreeding strategy, and to distinguish the type of inbreeding when making inferences from genetic markers. Therefore, we undertook an empirical analysis on an understudied type of mating system (spermcast mating in the marine bryozoan, Bugula neritina) that provides numerous opportunities for inbreeding preference, avoidance, and tolerance. We created experimental crosses, containing three generations from two populations to estimate how parental reproductive success varies across parental relatedness, ranging from self, siblings, and nonsiblings from within the same population. We found that the production of viable selfed offspring was extremely rare (only one colony produced three selfed offspring) and biparental inbreeding more common. Paternity analysis using 16 microsatellite markers confirmed outcrossing. The production of juveniles was lower for sib mating compared with nonsib mating. We found little evidence for consistent inbreeding, in terms of nonrandom mating, in adult samples collected from three populations, using multiple population genetic inferences. Our results suggest several testable hypotheses that potentially explain the overall mating and dispersal strategy in this species, including early inbreeding depression, inbreeding avoidance through cryptic mate choice, and differential dispersal distances of sperm and larvae.  相似文献   

7.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

8.
Theoretical and empirical comparisons of molecular diversity in selfing and outcrossing plants have primarily focused on long‐term consequences of differences in mating system (between species). However, improving our understanding of the causes of mating system evolution requires ecological and genetic studies of the early stages of mating system transition. Here, we examine nuclear and chloroplast DNA sequences and microsatellite variation in a large sample of populations of Arabidopsis lyrata from the Great Lakes region of Eastern North American that show intra‐ and interpopulation variation in the degree of self‐incompatibility and realized outcrossing rates. Populations show strong geographic clustering irrespective of mating system, suggesting that selfing either evolved multiple times or has spread to multiple genetic backgrounds. Diversity is reduced in selfing populations, but not to the extent of the severe loss of variation expected if selfing evolved due to selection for reproductive assurance in connection with strong founder events. The spread of self‐compatibility in this region may have been favored as colonization bottlenecks following glaciation or migration from Europe reduced standing levels of inbreeding depression. However, our results do not suggest a single transition to selfing in this system, as has been suggested for some other species in the Brassicaceae.  相似文献   

9.
Pollen movements and mating patterns are key features that influence population genetic structure. When gene flow is low, small populations are prone to increased genetic drift and inbreeding, but naturally disjunct species may have features that reduce inbreeding and contribute to their persistence despite genetic isolation. Using microsatellite loci, we investigated outcrossing levels, family mating parameters, pollen dispersal, and spatial genetic structure in three populations of Hakea oldfieldii, a fire‐sensitive shrub with naturally disjunct, isolated populations prone to reduction in size and extinction following fires. We mapped and genotyped a sample of 102 plants from a large population, and all plants from two smaller populations (28 and 20 individuals), and genotyped 158–210 progeny from each population. We found high outcrossing despite the possibility of geitonogamous pollination, small amounts of biparental inbreeding, a limited number of successful pollen parents within populations, and significant correlated paternity. The number of pollen parents for each seed parent was moderate. There was low but significant spatial genetic structure up to 10 m around plants, but the majority of successful pollen came from outside this area including substantial proportions from distant plants within populations. Seed production varied among seven populations investigated but was not correlated with census population size. We suggest there may be a mechanism to prevent self‐pollination in H. oldfieldii and that high outcrossing and pollen dispersal within populations would promote genetic diversity among the relatively small amount of seed stored in the canopy. These features of the mating system would contribute to the persistence of genetically isolated populations prone to fluctuations in size.  相似文献   

10.
普通野生稻小种群的交配系统与遗传多样性   总被引:2,自引:0,他引:2  
小种群的遗传动态是保育遗传学关注的核心问题之一,而种群遗传动态又与交配系统密切相关.普通野生稻(Oryza rufipogon Griff.)是具有重要经济价值的濒危物种,目前其种群规模都较小,研究其小种群交配系统与遗传变异性对普通野生稻的保护具有重要意义.运用7对SSR引物,对采自江西东乡普通野生稻小种群的36份种茎和其中20个家系共计601份子代进行了分析.结果显示:该种群的表观异交率为0.318,多位点法估计(MLTR)的多位点异交率为0.481;50%以上的子代共享亲本,非随机交配明显;东乡普通野生稻种群交配系统属于混合交配类型.比较亲本和子代种群的遗传变异性显示:子代种群比亲本种群遗传变异性更丰富;子代种群的杂合子不足与种群变小自交比例上升有关;而亲本种群杂合子过剩可能与杂合基因型的选择优势有关.这些结果说明创造条件扩大种群规模对普通野生稻的原生境保护显得尤为重要.  相似文献   

11.
Understanding how the mating system varies with population size in plant populations is critical for understanding their genetic and demographic fates. We examined how the mating system, characterized by outcrossing rate, biparental inbreeding rate, and inbreeding coefficient, and genetic diversity varied with population size in natural populations of the biennial Sabatia angularis. We found a significant, positive relationship between outcrossing and population size. Selfing was as high as 40% in one small population but was only 7% in the largest population. Despite this pattern, observed heterozygosity did not vary with population size, and we suggest that selection against inbred individuals maintains observed heterozygosity in small populations. Consistent with this hypothesis, we found a trend of lower inbreeding coefficients in the maternal than progeny generation in all of the populations, and half of the populations exhibited significant excesses of adult heterozygosity. Moreover, genetic diversity was not related to population size and was similar across all populations examined. Our results suggest that the consequences of increased selfing for population fitness in S. angularis, a species that experiences significant inbreeding depression, will depend on the relative magnitude and consistency of inbreeding depression and the demographic cost of selection for outcrossed progeny in small populations.  相似文献   

12.
Founder populations in reintroduction programmes can experience a genetic bottleneck simply because of their small size. The influence of reproductive skew brought on by polygynous or polyandrous mating systems in these populations can exacerbate already difficult conservation genetic problems, such as inbreeding depression and loss of adaptive potential. Without an understanding of reproductive skew in a target species, and the effect it can have on genetic diversity retained over generations, long‐term conservation goals will be compromised. In this issue of Molecular Ecology, Miller et al. (2009a) test how founder group size and variance in male reproductive success influence the maintenance of genetic diversity following reintroduction on a long‐term scale. They evaluated genetic diversity in two wild populations of the iconic New Zealand tuatara ( Fig. 1 ), which differ greatly in population size and genetic diversity, and compared this to genetic diversity in multiple founder populations sourced from both populations. Population viability analysis on the maintenance of genetic diversity over 400 years (10 generations) demonstrated that while the loss of heterozygosity was low when compared with both source populations (1–14%), the greater the male reproductive skew, the greater the predicted losses of genetic diversity. Importantly however, the loss of genetic diversity was ameliorated after population size exceeded 250 animals, regardless of the level of reproductive skew. This study demonstrates that highly informed conservation decisions could be made when you build on a solid foundation of demographic, natural history and behavioural ecology data. These data, when informed by modern population and genetic analysis, mean that fundamental applied conservation questions (how many animals should make up a founder population?) can be answered accurately and with an eye to the long‐term consequences of management decisions.
Figure 1 Open in figure viewer PowerPoint Large adult male tuatara attacking a smaller male. Photo by Jeanine Refsnider.  相似文献   

13.
The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co‐ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co‐ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re‐mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re‐mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems.  相似文献   

14.
Inbreeding can have negative consequences on population and individual fitness, which could be counteracted by inbreeding avoidance mechanisms. However, the inbreeding risk and inbreeding avoidance mechanisms in endangered species are less studied. The giant panda, a solitary and threatened species, lives in many small populations and suffers from habitat fragmentation, which may aggravate the risk of inbreeding. Here, we performed long‐term observations of reproductive behaviour, sampling of mother–cub pairs and large‐scale genetic analyses on wild giant pandas. Moderate levels of inbreeding were found in 21.1% of mating pairs, 9.1% of parent pairs and 7.7% of panda cubs, but no high‐level inbreeding occurred. More significant levels of inbreeding may be avoided passively by female‐biased natal dispersal rather than by breeding dispersal or active relatedness‐based mate choice mechanisms. The level of inbreeding in giant pandas is greater than expected for a solitary mammal and thus warrants concern for potential inbreeding depression, particularly in small populations isolated by continuing habitat fragmentation, which will reduce female dispersal and increase the risk of inbreeding.  相似文献   

15.
In bryophytes, the possibility of intragametophytic selfing creates complex mating patterns that are not possible in seed plants, although relatively little is known about patterns of inbreeding in natural populations. In the peat‐moss genus Sphagnum, taxa are generally bisexual (gametophytes produce both sperm and egg) or unisexual (gametes produced by separate male and female plants). We sampled populations of 14 species, aiming to assess inbreeding variation and inbreeding depression in sporophytes, and to evaluate correlations between sexual expression, mating systems, and microhabitat preferences. We sampled maternal gametophytes and their attached sporophytes at 12–19 microsatellite loci. Bisexual species exhibited higher levels of inbreeding than unisexual species but did generally engage in some outcrossing. Inbreeding depression did not appear to be common in either unisexual or bisexual species. Genetic diversity was higher in populations of unisexual species compared to populations of bisexual species. We found a significant association between species microhabitat preference and population genetic diversity: species preferring hummocks (high above water table) had populations with lower diversity than species inhabiting hollows (at the water table). We also found a significant interaction between sexual condition, microhabitat preference, and inbreeding coefficients, suggesting a vital role for species ecology in determining mating patterns in Sphagnum populations. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 96–113.  相似文献   

16.
17.
郑勇奇 《生态学报》2001,21(3):344-352
对古巴加勒比松的6个群体(包括天然林、采伐林、母树林和种子园)进行了同功酶分析,根据5个酶系统8个位点的同功酶数据,对各群 交配系统以及群体遗传变异和结构进行了分析,天然林、种子园和母树林的多位点异交率和绝大多数单位点异交率都和完全异交无显著差异,过渡采伐的松树岛群体多位点异交率显著小于完全异交,而只有一半单位点异交率显著小于完全异交,而且该群体单位点平均异交率和多位点异交率均低于其它3个群体的估计值。采伐群体中同功酶变异和基因多样性与天然林群体JAG的相似,但低于其它群体,其近交系数较大,但小于天然林MAN和中国栽培群体的近交系数。中国引种栽培群体无论是同功酶变异还是基因多样性都显著高于古巴群体,与所有古巴群体的遗传距离都显著大于古巴群体之间的遗传距离。结果表明过度采伐导致群体自交程度增加,营建种子园可有效减少近交。自然分布区以外的引种栽培群体遗传变化量大,无论遗传变异和基因多样性都比参试其它群体大。  相似文献   

18.
Basic models of mating‐system evolution predict that hermaphroditic organisms should mostly either cross‐fertilize, or self‐fertilize, due to self‐reinforcing coevolution of inbreeding depression and outcrossing rates. However transitions between mating systems occur. A plausible scenario for such transitions assumes that a decrease in pollinator or mate availability temporarily constrains outcrossing populations to self‐fertilize as a reproductive assurance strategy. This should trigger a purge of inbreeding depression, which in turn encourages individuals to self‐fertilize more often and finally to reduce male allocation. We tested the predictions of this scenario using the freshwater snail Physa acuta, a self‐compatible hermaphrodite that preferentially outcrosses and exhibits high inbreeding depression in natural populations. From an outbred population, we built two types of experimental evolution lines, controls (outcrossing every generation) and constrained lines (in which mates were often unavailable, forcing individuals to self‐fertilize). After ca. 20 generations, individuals from constrained lines initiated self‐fertilization earlier in life and had purged most of their inbreeding depression compared to controls. However, their male allocation remained unchanged. Our study suggests that the mating system can rapidly evolve as a response to reduced mating opportunities, supporting the reproductive assurance scenario of transitions from outcrossing to selfing.  相似文献   

19.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

20.
Sinojackia, a member of the family Styracaceae, is an endangered genus endemic to China. The number of populations and population size of Sinojackia have decreased sharply because of habitat fragmentation and destruction. We studied the genetic diversity of extant populations in two different cohorts (adult and seedling) using eight microsatellite markers to investigate the genetic footprints of habitat fragmentation in four recognized Sinojackia spp. and to develop appropriate conservation measures. Data on intrapopulational genetic diversity suggest that Sinojackia populations have maintained relatively high levels of genetic diversity and low levels of genetic differentiation despite severe fragmentation. The high genetic diversity may be explained by the outcrossing mating system and high longevity of Sinojackia spp. The amount of genetic variation is not associated with population size, which was also supported by bottleneck analysis. In the species studied, there was no significant difference in the genetic diversity between the two cohorts analysed. However, inbreeding increased from adult trees to seedling populations, suggesting that the higher proportion of biparental inbreeding in the recent generations of seedlings is the result of restricted current genetic flow caused by habitat fragmentation. Average seed set per population was not significantly correlated with either population size or genetic diversity. Conservation management should aim to monitor inbreeding and outbreeding depression carefully to ensure the in situ and ex situ conservation of Sinojackia spp. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号