首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of population genetics provides insights into the evolutionary processes, among which the sample size choice is per se a crucial issue in the analysis. Genome‐wide high‐throughput techniques based on RADseq have been increasingly used in studies on the population genomics of invasive species. However, there is little information available regarding optimal sample sizes for analyzing population genomics of invasive species. In this study, we first use type IIB endonucleases restriction site‐associated DNA (2b‐RAD) to mine thousands of single nucleotide polymorphisms (SNPs) for native and introduced populations in Q1 clade (SPB and 17JN) and Q2 clade (ISQ and UAS0601) of the whitefly, Bemisia tabaci (Gennadius) MED (also known as B. tabaci biotype Q). Then, we used resampling techniques to create simulated populations with a random subset of individuals and 3,000 SNPs to determine how many individuals should be sampled for accurate estimates of intra‐ and interpopulation genetic diversity. We calculated the intrapopulation genetic diversity parameters (unbiased expected heterozygosity, observed heterozygosity, and the number of effect alleles) and pairwise genetic differentiation FST; finally, an ad hoc statistic, ΔK, was used to determine the optimal value. Our results showed that a sample size greater than four individuals (n ≥ 4) has little impact on estimates of genetic diversity within whitefly populations; moreover, precise estimate of FST can be easily achieved at a very small simple size (n = 3 or 4). Our results will provide in‐depth understanding of the optimization of sampling schemes in population genomics of invasive species.  相似文献   

2.
Solanum pennellii LA716, a wild relative of tomato, produces acylsugars, an insect resistance compound with activity against many tomato insect pests. Breeding of cultivated tomato using S. pennellii LA716 as a donor parent has led to the development of the elite acylsugar-producing tomato breeding line CU071026. CU071026 contains five introgressed S. pennellii genomic regions, and produces acylsugars at moderate levels that are effective against insect pests. A BC1F1 population was created by crossing the F1 CU071026?×?S. pennellii LA716 with CU071026 as the recurrent parent; this BC1F1 population was used to identify additional regions of the S. pennellii genome important for further improvement of acylsugar production. This population was genotyped with 94 markers in the segregating regions and phenotyped for level of acylsugar production. Using QTLNetwork 2.1 for the detection of quantitative trait loci (QTL) and epistatic interactions, this study identified five QTL for total acylsugar level. Additionally, two epistatic interactions between QTL were found to control significant levels of total acylsugar production. Two of the QTL identified were further evaluated in silverleaf whitefly (Bemisia tabaci) field cage trials using acylsugar breeding lines that differ for the presence/absence of these QTL. While high levels of silverleaf whitefly resistance were observed in all acylsugar breeding lines, lines containing the additional QTL on either chromosomes 6 or 10 had increased levels of total acylsugar production and reduced incidence of whitefly. Acylsugar lines containing the chromosome 6 QTL also had increased density of the type IV glandular trichomes which produce and exude acylsugars.  相似文献   

3.
The silverleaf whitefly (SLW), Bemisia tabaci biotype B, is considered one of the most serious pests in cotton worldwide. Its control is based on the use of pesticides, which are well‐known for their harmful effects on non‐target organisms and the environment. Here, we examined resistance of several cotton genotypes in terms of antixenosis and antibiosis against SLW. We also investigated the mechanisms of cotton genotypes involved in antixenosis against SLW by correlating with leaf trichome density and leaf colour parameters. In choice tests, we selected resistant cotton genotypes, Gossypium hirsutum palmeri, Aubum 56‐7, G. hirsutum morrilli, Mocó, Nu‐16 (B2 B3 B6)‐ 78/658, Paymaster 53‐816 and ‘IAC 23’, based on SLW oviposition and host preference. No‐choice tests with these genotypes confirmed antixenosis effect on SLW; however, no antibiosis resistance was detected in terms of developmental period and adult emergence rate. We found SLW oviposition preference was positively correlated with trichome density in the abaxial leaf surface, while adult host preference was mostly explained by high levels of green intensity of adaxial surface. Nevertheless, both SLW oviposition and host preference were negatively correlated with the lightness level of adaxial leaf surface. Probably, the underlying mechanism of cotton resistance is based on more than just these two parameters, but our study will contribute to selecting resistant cotton genotypes and helps to understand the mechanisms involved in cotton resistance against SLW. To our best knowledge, this is the first work showing that cotton leaf colour parameters are related to resistance against SLW.  相似文献   

4.
Lycopersicon pennellii LA716, a wild relative of tomato, is resistant to a number of insect pests due to the accumulation of acylsugars exuded from type IV trichomes. These acylsugars are a class of compounds including both acylglucoses and acylsucroses. Intraspecific populations between L. pennellii LA716 and L. pennellii LA1912, the latter an accession that assorts for low-level acylsugar accumulation, were created to study the inheritance of type IV trichome density, acylsugar accumulation levels, percentage of acylsugars that are acylglucoses, and leaf area. The F2 population was subsequently used to determine genomic regions associated with these traits. The relative proportion of acylglucoses and acylsucroses was found to be largely controlled by a single locus near TG549 on chromosome 3. One locus on chromosome 10 showed significant associations with acylsugar levels. In addition, 1 locus on chromosome 4 showed significant associations with leaf area. Ten additional loci showed modest associations with one or more of the traits examined, 5 of which have been previously reported. Received: 13 March 1997 / Accepted: 19 September 1997  相似文献   

5.
The sweetpotato whitefly, Bemisia tabaci (Gennadius), is a worldwide pest of numerous agricultural and ornamental crops. In addition to directly feeding on plants, it also acts as a vector of plant viruses of cultivated and uncultivated host plant species. Moreover, host plants can affect the population dynamics of whiteflies. An open‐choice screening experiment was conducted with B‐biotype B. tabaci on a diverse collection of crops, weeds, and other indigenous plant species. Five of the plant species were further evaluated in choice or no‐choice tests in the laboratory. The results reveal 49 new reproductive host plant species for B. tabaci. This includes 11 new genera of host plants (Arenaria, Avena, Carduus, Dichondra, Glechoma, Gnaphalium, Molugo, Panicum, Parthenocissus, Trianthema, and Triticum) for this whitefly. All species that served as hosts were acceptable for feeding, oviposition, and development to the adult stage by B. tabaci. The new hosts include three cultivated crops [oats (Avena sativa L.), proso millet (Panicum miliaceum L.), and winter wheat (Triticum aestivum L.)], weeds and other wild species, including 32 Ipomoea species, which are relatives of sweetpotato [I. batatas (L.) Lam.)]. Yellow nutsedge, Cyperus esculentus L., did not serve as a host for B. tabaci in either open‐choice or no‐choice tests. The results presented herein have implications for whitefly ecology and the numerous viruses that B. tabaci spreads to and among cultivated plants.  相似文献   

6.
We conducted three experiments for management of Bemisia tabaci (Gennadius) biotype ‘B’ on tomatoes under greenhouse conditions: (i) vertically placing yellow sticky cards either parallel or perpendicular to tomato rows at a rate of 1 per 3‐m row; (ii) releasing Eretmocerus sp. nr. rajasthanicus once at 30 adults/m2 in the high whitefly density greenhouses (> 10 adults/plant), or twice at 15 adults/m2 at a 5‐day interval in the low whitefly density greenhouses (< 10 adults/plant); and (iii) using combinations of yellow sticky cards that were placed vertically parallel to tomato rows and parasitoids released once at 30/m2 in high whitefly density greenhouses or twice at 15/m2 at a 5‐day interval in low whitefly density greenhouses. Our data show that yellow sticky cards trapped B. tabaci adults and significantly reduced whitefly populations on tomato. The yellow sticky cards that were placed parallel to tomato rows caught significantly more whitefly adults than those placed perpendicular to tomato rows on every sampling date. In the treatment where parasitoids were released once at 30/m2 in high whitefly density greenhouses, the number of live whitefly nymphs were reduced from 4.6/leaf to 2.9/leaf in 40 days as compared with those on untreated plants on which live whitefly nymphs increased from 4.4/leaf to 8.9/leaf. In the treatment where parasitoids were released twice at 15/m2 in low whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.1/leaf to 1.7/leaf in 20 days as compared with those on untreated plants on which numbers of live nymphs of B. tabaci increased from 2.2/leaf to 4.5/leaf. In the treatment of yellow sticky cards and parasitoid release once at 30/m2 in high whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 7.2/leaf to 1.9/leaf, and in the treatment of yellow sticky cards and parasitoid release twice at 15/m2 at a 5‐day interval at low whitefly density, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.5/leaf to 0.8/leaf; whereas the numbers of live nymphs of B. tabaci on untreated plants increased from 4.4/leaf to 8.9/leaf. An integrated program for management of B. tabaci on greenhouse vegetables by using yellow sticky cards, parasitoids and biorational insecticides is discussed.  相似文献   

7.
The greenhouse whitefly, Trialeurodes vaporariorum Westwood, is an agricultural pest of global importance. Here we report a 787‐Mb high‐quality draft genome sequence of T. vaporariorum assembled from PacBio long reads and Hi‐C chromatin interaction maps, which has scaffold and contig N50 lengths of 70 Mb and 500 kb, respectively, and contains 18,275 protein‐coding genes. About 98.8% of the assembled contigs were placed onto the 11 T. vaporariorum chromosomes. Comparative genomic analysis reveals significantly expanded gene families such as aspartyl proteases in T. vaporariorum compared to Bemisia tabaci Mediterranean (MED) and Middle East‐Asia Minor 1 (MEAM1). Furthermore, the cytochrome CYP6 subfamily shows significant expansion in T. vaporariorum and several genes in this subfamily display developmental stage‐specific expression patterns. The high‐quality T. vaporariorum genome provides a valuable resource for research in a broad range of areas such as fundamental molecular ecology, insect–plant/insect–microorganism or virus interactions and pest resistance management.  相似文献   

8.
Cover Caption     
《Insect Science》2013,20(2):i-i
The whitefly Bemisia tabaci contains many big bacteriocytes, which house the primary symbiont “Candidatus Portiera aleyrodidarum” and a variety of secondary symbionts (see pages 194–206). The primary symbiont provides essential amino acids to hosts and the secondary symbionts can affect the life parameters of B. tabaci including fecundity, development time and sex‐ratio. In addition, the secondary symbionts of B. tabaci have been reported to confer resistance to natural enemies, heat stress and insecticides. Photo in cover shows a nymph of the whitefly and the two kidney‐like organs are the assemblage of bacteriocytes. Image by Xiao‐Li Bing.  相似文献   

9.
Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae) are major pests in greenhouse grown cucumber crops. Recently, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was shown an effective biological control agent of both pests. Hence, perhaps both pests can be controlled simultaneously by this predator. However, with simultaneous infestation of both pests, synergistic effects, or interference could affect biological control and perhaps require changes in release rates of the predator. Thus, the aim of the present study was to evaluate different release rates of A. swirskii to control both pests under a worst case scenario of rapid immigration into a cucumber greenhouse. Two experiments were conducted, one simulating the influx of whiteflies alone (whitefly experiment) and the other immigration of whiteflies and thrips together (whitefly plus thrips experiment). Three treatments were compared in the whitefly experiment: (1) B. tabaci alone, (2) B. tabaci + 25 A. swirskii m−2 and (3) B. tabaci + 75 A. swirskii m−2. The high release rate was more effective than the low rate in controlling B. tabaci alone. The high rate was subsequently tested against B. tabaci and F. occidentalis for the whitefly and thrips experiment in which five treatments were compared: (1) B. tabaci alone, (2) F. occidentalis alone, (3) B. tabaci + 75 A. swirskii m−2, (4) F. occidentalis + 75 A. swirskii m−2 and (5) B. tabaci + F. occidentalis + 75 A. swirskii m−2. This rate of A. swirskii controlled whiteflies and thrips either alone or together. Therefore, 75 A. swirskii m−2 should be an adequate rate for controlling both pests either alone or simultaneously in cucumber greenhouses.  相似文献   

10.
Atmospheric carbon dioxide concentration is expected to rise in the coming decades. Rising atmospheric CO2 levels may alter plant‐insect‐parasitoid associations due to the indirect effects of CO2 enrichment on phytochemicals important for herbivore and parasitoid nutrition. Tritrophic effects of elevated CO2 on Bt cotton (GK‐12) and non‐transgenic (Simian‐3, or S3) cotton [Gossypium hirsutum L. (Malvaceae)], Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae), and its parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae), were examined in open‐top chambers. Significantly, longer egg‐adult developmental duration and higher mortality of nymphs were observed under elevated CO2 concentrations on both cotton cultivars during three successive generations. However, no significant differences were found in adult longevity, offspring sex ratio, and the number of eggs laid per female adult of B. tabaci fed on transgenic (GK‐12) or non‐transgenic cotton (S3) grown under elevated CO2. Abundance of B. tabaci adults increased from 10 to 120 per plant and then decreased to 40 per plant through the growing season, but no significant differences in density occurred between CO2 treatments and between cultivar treatments. Similarly, no significant differences were found in the developmental duration, parasitization rate, and adult emergence rate of E. formosa after parasitizing B. tabaci for three successive generations. Our results showed that the effects of transgenic Bt cotton did not significantly affect the development, survivorship, life span, or fecundity of B. tabaci and its parasitoids. Moreover, interactions between B. tabaci and E. formosa were not significantly affected by elevated CO2. These results suggest that the biological control of B. tabaci by E. formosa would not be influenced by transgenic Bt cotton and/or elevated CO2, indicating that the current risk management strategy regarding B. tabaci outbreaks and biocontrol by E. formosa will remain effective if the atmospheric CO2 level continues to rise.  相似文献   

11.
Summary The allelic relationship of resistance genes for MYMV was studied in blackgram (V. mungo (L.) Hepper). The resistant donors to MYMV — Pant U84 and UPU 2, and their F1, F2 and F3 generations — were inoculated artificially using an insect vector, whitefly (Bemisia tabaci Genn.). The two recessive genes previously reported for resistance were found to be the same in both donors.Part of Ph.D. Thesis submitted by the senior author. Research Paper No. 4271  相似文献   

12.
13.
Summary The potato aphid, Macrosiphum euphorbiae Thomas, is an important pest of tomato, Lycopersicon esculentum Mill., because it transmits tomato viruses and directly reduces crop yields by its feeding. This study was conducted to determine whether the wild tomato species, Lycopersicon pennellii (Corr.) D'Arcy, would be useful as a source of potato aphid resistance for tomato. Type IV trichome density and aphid resistance were assessed in six generations (P1, P2, F1, F2, BC1P1, and BC1P2) from crosses between L. pennellii (LA 716) and two tomato cultivars, New Yorker and VF Vendor. Weighted leastsquares were used in joint scaling tests to estimate the relative importance of gene effects on type IV trichome density and potato aphid resistance of the hybrids. A simple additive-dominance model adequately explained the variation in type IV trichome density. Models which included digenic epistatic effects were required to explain the variation in aphid resistance. Standard unit heritability estimates of aphid resistance in the backcross to L. esculentum were obtained by regression of BC1F2 off-spring families on BC1F1 parents. Regression coefficients and heritability estimates varied between years with the level and uniformity of the aphid infestation. In the 1985–1986 growing seasons, when aphid infestations were uniform, aphid resistance exhibited a moderate level of heritability (29.8% ± 14.1% and 47.1% ± 11.5% in New Yorker and VF Vendor backcross populations, respectively). The non-uniform aphid infestation of 1984 resulted in lower heritability estimates in the 1984–1985 growing seasons (16.1% ± 15.7% and 21.9% ± 14.8% in the New Yorker and VF Vendor backcross populations, respectively). Selection for potato aphid resistance would probably be most efficient if it were delayed until gene combinations are fixed in later generations, because of the large epistatic effects and the low heritability of this trait in seasons with variable aphid infestations.  相似文献   

14.
Using an F1 screen, 352 feral individuals of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), were examined for the presence of Bacillus thuringiensis (Bt)‐resistance alleles. These insects represented four geographical populations collected in central and northeastern Louisiana, USA, and one field population from the Gulf Coast area of Texas, USA, during 2006. The F1 screen used various crosses between field‐collected insects and a laboratory strain of Cry1Ab‐resistant D. saccharalis, including both reciprocal crosses and group mating. F1 neonates of the crosses were screened for Bt resistance on Bt maize leaf tissue. One field‐collected individual of D. saccharalis was shown to have a Bt‐resistance allele. Based on Bayesian analysis procedures, the Bt‐resistance allele frequency in the five populations of D. saccharalis was 0.0028 with a 95% confidence interval of 0.0003–0.0079. The successful identification of a resistance allele in a field collection of insects suggests that the F1 screening technique could be an effective tool for detecting and monitoring rare Bt‐resistance alleles in field populations of D. saccharalis.  相似文献   

15.
Two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B were shown to have different temperature tolerance and seasonal dynamics. To determine whether this variation in thermal tolerance is related to different expression patterns of heat shock protein (hsp) genes during temperature stress, we obtained complete cDNA sequences for hsp90, hsp70 and hsp20, and analysed their expression profiles across temperature gradients by real‐time quantitative polymerase chain reaction (PCR). Six full‐length cDNAs were cloned and sequenced from these two species. The full‐length cDNAs of hsp90s contain 2166 and 2157 bp open‐reading frames (ORF) which encode proteins with calculated molecular weights of 83 013 and 82 857 Da in T. vaporariorum and B. tabaci, respectively. The 1947 and 1959 bp ORFs of whitefly hsp70s comprise 649 and 653 amino acids with the calculated masses of 70 885 and 71 008 Da in T. vaporariorum and B. tabaci, respectively. Both complete cDNAs of hsp20 of T. vaporariorum and B. tabaci contain 585 bp ORFs and deduced amino acid sequences had molecular weights of 21 559 and 21 539 Da, respectively. The hsp expression profile results showed that temperatures for onset (Ton) or maximal (Tmax) induction of hsp expression in T. vaporariorum were generally 2–6°C lower than those in B. tabaci. These results suggest that the Ton (or Tmax) of hsps can represent the differences in temperature tolerance of these two whitefly species, and may be used to determine their natural geographical distribution and natural population seasonal dynamics. Significant upregulation of most hsps were observed when temperature stress was lifted, except that hsp70 and hsp20 of B. tabaci did not respond to the cold stress, indicating that response to heat and cold stress may have a different genetic and physiological basis in two whitefly species. These results highlight the importance of understanding the complexity of the heat shock response across multiple isoforms while attempting to link them to whole‐organism traits such as thermal tolerance.  相似文献   

16.
Abstract The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) remains a serious threat to crops worldwide. The damaging B‐biotype is of specific economic concern because it is an effective vector of over 111 viruses from several families, particularly geminiviruses. Bemisia tabaci is regularly intercepted on plants coming into the UK where it is subjected to a policy of eradication. The UK maintains Protective Zone status against this pest. A main pathway of entry of B. tabaci into the Protected Zone involves propagating material, especially Poinsettia (Euphorbia pulcherrima). With increased insecticide resistance continuously being recorded, B. tabaci is becoming more difficult to control/eradicate. Recent research involving both entomopathogenic nematodes and fungi is showing much potential for the development of control programs for this pest. Both the nematode Steinernema feltiae and the fungus Lecanicillium muscarium have been shown to be most effective against second instar B. tabaci. Fine‐tuning of the environmental conditions required has also increased their efficacy. The entomopathogens have also shown a high level of compatibility with chemical insecticides, all increasing their potential to be incorporated into control strategies against B. tabaci.  相似文献   

17.
Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), one of the most economically important agricultural pests worldwide, is the vector of cassava mosaic geminiviruses that cause cassava mosaic disease (CMD). In East and Central Africa, a severe CMD pandemic that spread from Uganda in the late 1980s still continues to devastate cassava crops. To assess the association of distinct B. tabaci genetic groups with the CMD pandemic, mitochondrial cytochrome oxidase I gene sequences were analysed from whiteflies collected during surveys conducted from 2010 to 2013 in Tanzania. Four genetic groups – Sub‐Saharan Africa 1 (SSA1), Mediterranean, Indian Ocean and East Africa 1, and a group of unknown whitefly species were identified. SSA1 comprised four subgroups: SSA1‐SG1, SSA1‐SG2, SSA1‐SG1/2 and SSA1‐SG3. SSA1‐SG1 was confined to the pandemic‐affected north‐western parts of Tanzania whilst SSA1‐SG2 and SSA1‐SG3 were found in the central and eastern parts not yet affected by the pandemic. The CMD pandemic front was estimated to lie in Geita Region, north‐western Tanzania, and to be spreading south‐east at a rate of ca 26 km/year. The pandemic‐associated B. tabaci SSA1‐SG1 predominated up to 180 km ahead of the CMD front indicating that changes in whitefly population characteristics precede changes in disease characteristics.  相似文献   

18.
Abstract Effects of elevated CO2 (twice ambient vs. ambient) and Bt Cry1Ac transgene (Bt cotton cv. 33B vs. its nontransgenic parental line cv. DP5415) on the interspecific competition between two ecologically similar species of cotton aphid Aphis gossypii and whitefly biotype‐Q Bemisia tabaci were studied in open‐top chambers. The results indicated that elevated CO2 and Bt cotton both affected the population abundances of A. gossypii and biotype‐Q B. tabaci when introduced solely (i.e., without interspecific competition) or two species coexisted (i.e., with interspecific competition). Compared with ambient CO2, elevated CO2 increased the population abundances of A. gossypii and biotype‐Q B. tabaci as fed on Bt and nontransgenic cotton on 45 (i.e., seedling stage) and 60 (i.e., flowering stage) days after planting (DAP), but only significantly enhanced aphid abundance without interspecific competition on the 45‐DAP nontransgenic cotton and 60‐DAP Bt cotton, and significantly increased whitefly abundance with interspecific competition on the 45‐DAP Bt cotton and 60‐DAP nontransgenic cotton. In addition, compared with nontransgenic cotton at elevated CO2, Bt cotton significantly reduced biotype‐Q B. tabaci abundances without and with interspecific competition during seedling and flowering stage, while only significantly decreasing A. gossypii abundances without interspecific competition during the seedling stage. When the two insect species coexisted, the proportions of biotype‐Q B. tabaci were significantly higher than those of A. gossypii on Bt and nontransgenic cotton at the same CO2 levels, and elevated CO2 only significantly increased the percentages of biotype‐Q B. tabaci and significantly reduced the proportions of A. gossypii on seedling and flowering nontransgenic cotton. Therefore, the effects of elevated CO2 were favorable for biotype‐Q B. tabaci to out‐compete A. gossypii under the predicted global climate change.  相似文献   

19.
20.
The strength of plant‐herbivore interactions varies spatially and through plant ontogeny, which may result in variable selection on plant defense, both among populations and life‐history stages. To test whether populations have diverged in herbivore resistance at an early plant stage, we quantified oviposition preference and larval feeding by Plutella xylostella (L.) (Lepidoptera: Plutellidae) on young (5–6 weeks old) Arabidopsis lyrata (L.) O'Kane & Al‐Shehbaz (Brassicaceae) plants, originating from 12 natural populations, six from Sweden and six from Norway. Arabidopsis lyrata can be trichome‐producing or glabrous, with glabrous plants usually receiving more damage from insect herbivores in natural populations. We used the six populations polymorphic for trichome production to test whether resistance against P. xylostella differs between the glabrous and the trichome‐producing morph among young plants. There was considerable variation among populations in the number of eggs received and the proportion of leaf area consumed by P. xylostella, but not between regions (Sweden vs. Norway) or trichome morphs. Rosette size explained a significant portion of the variation in oviposition and larval feeding. The results demonstrate that among‐population variation in resistance to insect herbivory can be detected among very young individuals of the perennial herb A. lyrata. They further suggest that trichome densities are too low at this plant developmental stage to contribute to resistance, and that the observed among‐population variation in resistance is related to differences in other plant traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号