首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
The mechanism of the Na+/K(+)-ATPase activation by trypsin (from bovine pancreas) and kallikrein (from human plasma) was investigated on enzyme preparations from different sources (beef heart and dog kidney) and at different degrees of purification (beef heart). Kallikrein was effective on both beef and dog enzymes, whereas trypsin stimulated only the beef-heart Na+/K(+)-ATPase. The extent of activation by the proteinases was inversely related to the degree of purification (maximal enzyme activation about 60 and 20% on the partially purified and the more purified enzymes, respectively). Enzyme activation was observed up to 0.5-0.6 microgram/ml of proteinase. At higher concentrations the activation decreased and was converted into inhibition at proteinase concentrations above 1.0 micrograms/ml. Na+/K(+)-ATPase stimulation was due to an increase in the Vmax of the enzyme reaction. Km for ATP remained unaffected. The activating effect was favoured by sodium and counteracted by potassium. Accordingly, Na(+)-ATPase activity was stimulated to a greater extent (up to 350%), whereas K(+)-dependent p-nitrophenylphosphatase activity proved to be insensitive to the actions of the proteinases. The Na+/K(+)-ATPase stimulation by both proteinases was antagonized by either ouabain or canrenone, two drugs that bind on the extracellular side of the Na+/K(+)-ATPase molecule. On the contrary, the enzyme inactivation observed at high proteinase concentrations was not counteracted by these two drugs. The stimulation of either Na+/K(+)- or Na(+)-ATPase activity was shown to be an irreversible effect without any significant protein degradation detectable by SDS gel electrophoresis. The results obtained suggest that proteinases exert their stimulatory effects by interacting preferentially with the E2 conformation of Na+/K(+)-ATPase at site(s) located on the extracellular moiety of the enzyme.  相似文献   

2.
The phosphorylation of the alpha-subunit of Na+/K(+)-transporting ATPase (Na,K-ATPase) by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was characterized in purified enzyme preparations of Bufo marinus kidney and duck salt gland and in microsomes of Xenopus oocytes. In addition, we have examined cAMP and phorbol esters, which are stimulators of PKA and PKC, respectively, for their ability to provoke the phosphorylation of alpha-subunits of Na,K-ATPase in homogenates of Xenopus oocytes. In the enzyme from the duct salt gland, phosphorylation by PKA and PKC occurs on serine and threonine residues, whereas in the enzyme from B. marinus kidney and Xenopus oocytes, phosphorylation by PKA occurs only on serine residues. Phosphopeptide analysis indicates that a site phosphorylated by PKA resides in a 12-kDa fragment comprising the C terminus of the polypeptide. Studies of phosphorylation performed on homogenates of Xenopus oocytes show that not only endogenous oocyte Na,K-ATPase but also exogenous Xenopus Na,K-ATPase expressed in the oocyte by microinjection of cRNA can be phosphorylated in response to stimulation of oocyte PKA and PKC. In conclusion, these data are consistent with the possibility that the alpha-subunit of Na,K-ATPase can serve as a substrate for PKA and PKC in vivo.  相似文献   

3.
We examined the effect of protein kinase C (PKC)-dependent phosphorylation on Ca2+ uptake and ATP hydrolysis by microsomal as well as purified sarcolemmal Ca2(+)-ATPase preparations isolated from bovine aortic smooth muscle. The phosphorylation was performed by treating these preparations with PKC and saturating concentrations of ATP (or ATP-gamma S), Ca2+, and 12-O-tetradecanoyl phorbol-13-acetate (TPA) at 37 degrees C for 10 min. In microsomes, treatment with PKC enhanced a portion of the Ca2+ uptake activity inhibitable by 10 microM vanadate, by up to about 30%. On the other hand, Ca2(+)-dependent ATPase activity in the purified Ca2(+)-ATPase preparation was stimulated by up to twofold. Up to twofold stimulation by PKC was also observed for the Ca2+ uptake by proteoliposomes reconstituted from purified sarcolemmal Ca2(+)-ATPase and phospholipids. Since these effects were evident only at Ca2+ concentrations between 0.1 to 1.0 microM, we concluded that it was the affinity of the Ca2(+)-ATPase for Ca2+ that was increased by the PKC treatment. Under conditions in which PKC increased Ca2+ pump activity, the sarcolemmal Ca2(+)-ATPase was phosphorylated to a level of about 1 mol per mol of the enzyme. There was good parallelism between the ATPase phosphorylation and the extent of enzyme activation. These results strongly suggest that the activity of the sarcolemmal Ca2+ pump in vascular smooth muscle is regulated through its direct phosphorylation by PKC.  相似文献   

4.
Choline chloride, 100 mM, stimulates Na+/K(+)-ATPase activity of a purified dog kidney enzyme preparation when Na+ is suboptimal (9 mM Na+ and 10 mM K+) and inhibits when K+ is suboptimal (90 mM Na+ and 1 mM K+), but has a negligible effect at optimal concentrations of both (90 mM Na+ and 10 mM K+). Stimulation occurs at low Na+ to K+ ratios, but not at those same ratios when the actual Na+ concentration is high (90 mM). Stimulation decreases or disappears when incubation pH or temperature is increased or when Li+ is substituted for K+ or Rb+. Choline+ also reduces the Km for MgATP at the low ratio of Na+ to K+ but not at the optimal ratio. In the absence of K+, however, choline+ does not stimulate at low Na+ concentrations: either in the Na(+)-ATPase reaction or in the E1 to E2P conformational transition. Together, these observations indicate that choline+ accelerates the rate-limiting step in the Na+/K(+)-ATPase reaction cycle, K(+)-deocclusion; consequently, optimal Na+ concentrations reflect Na+ accelerating that step also. Thus, the observed K0.5 for Na+ includes high-affinity activation of enzyme phosphorylation and low-affinity acceleration of K(+)-deocclusion. Inhibition of Na+/K(+)-ATPase and K(+)-nitrophenylphosphatase reactions by choline+ increases as the K(+)-concentration is decreased; the competition between choline+ and K+ may represent a similar antagonism between conformations selected by choline+ and by K+.  相似文献   

5.
The Na+,K(+)-ATPase is a membrane-bound, sulfhydryl-containing protein whose activity is critical to maintenance of cell viability. The susceptibility of the enzyme to radical-induced membrane lipid peroxidation was determined following incorporation of a purified Na+,K(+)-ATPase into soybean phosphatidylcholine liposomes. Treatment of liposomes with Fenton's reagent (Fe2+/H2O2) resulted in malondialdehyde formation and total loss of Na+,K(+)-ATPase activity. At 150 microM Fe2+/75 microM H2O2, vitamin E (5 mol%) totally prevented lipid peroxidation but not the loss of enzyme activity. Lipid peroxidation initiated by 25 microM Fe2+/12.5 microM H2O2 led to a loss of Na+,K(+)-ATPase activity, however, vitamin E (1.2 mol%) prevented both malondialdehyde formation and loss of enzyme activity. In the absence of liposomes, there was complete loss of Na+,K(+)-ATPase activity in the presence of 150 microM Fe2+/75 microM H2O2, but little effect by 25 microM Fe2+/12.5 microM H2O2. The activity of the enzyme was also highly sensitive to radicals generated by the reaction of Fe2+ with cumene hydroperoxide, t-butylhydroperoxide, and linoleic acid hydroperoxide. Lipid peroxidation initiated by 150 microM Fe2+/150 microM Fe3+, an oxidant which may be generated by the Fenton's reaction, inactivated the enzyme. In this system, inhibition of malondialdehyde formation by vitamin E prevented loss of Na+,K(+)-ATPase activity. These data demonstrate the susceptibility of the Na+,K(+)-ATPase to radicals produced during lipid peroxidation and indicate that the ability of vitamin E to prevent loss of enzyme activity is highly dependent upon both the nature and the concentration of the initiating and propagating radical species.  相似文献   

6.
Parathyroid hormone (PTH) inhibits Na(+),K(+)-ATPase activity through protein kinase C- (PKC) and extracellular signal-regulated kinase- (ERK) dependent pathways and increases serine phosphorylation of the alpha(1)-subunit. To determine whether specific serine phosphorylation sites within the Na(+),K(+)-ATPase alpha(1)-subunit are involved in the Na(+),K(+)-ATPase responses to PTH, we examined the effect of PTH in opossum kidney cells stably transfected with wild type rat Na(+),K(+)-ATPase alpha(1)-subunit (WT), serine 11 to alanine mutant alpha(1)-subunit (S11A), or serine 18 to alanine mutant alpha(1)-subunit (S18A). PTH increased phosphorylation and endocytosis of the Na(+),K(+)-ATPase alpha(1)-subunit into clathrin-coated vesicles in cells transfected with WT and S18A rat Na(+),K(+)-ATPase alpha(1)-subunits. PTH did not increase the level of phosphorylation or stimulate translocation of Na(+),K(+)-ATPase alpha(1)-subunits into clathrin-coated vesicles in cells transfected with the S11A mutant. PTH inhibited ouabain-sensitive (86)Rb uptake and Na(+),K(+)-ATPase activity (ouabain-sensitive ATP hydrolysis) in WT- and S18A-transfected opossum kidney cells but not in S11A-transfected cells. Pretreatment of the cells with the PKC inhibitors and ERK inhibitor blocked PTH inhibition of (86)Rb uptake, Na(+),K(+)-ATPase activity, alpha(1)-subunit phosphorylation, and endocytosis in WT and S18A cells. Consistent with the notion that ERK phosphorylates Na(+),K(+)-ATPase alpha(1)-subunit, ERK was shown to be capable of causing phosphorylation of Na(+),K(+)-ATPase alpha(1)-subunit immunoprecipitated from WT and S18A but not from S11A-transfected cells. These results suggest that PTH regulates Na(+),K(+)-ATPase by PKC and ERK-dependent alpha(1)-subunit phosphorylation and that the phosphorylation requires the expression of a serine at the 11 position of the Na(+),K(+)-ATPase alpha(1)-subunit.  相似文献   

7.
The phosphorylation of two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase by 32Pi was studied under equilibrium conditions in various enzyme preparations from rat medulla oblongata, rat cerebral cortex, rat cerebellum, rat kidney, guinea pig kidney, and rabbit kidney. In ouabain-sensitive (Na+ + K+)-ATPases such as the brain, guinea pig kidney, and rabbit kidney enzymes, ouabain stimulated the Mg2+-dependent phosphorylation at lower concentrations, while a higher concentration was required for the stimulation of rat kidney (Na+ + K+)-ATPase, an ouabain-insensitive enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that two isozymes of the brain (Na+ + K+)-ATPase were also phosphorylated by 32Pi in the presence of ouabain. The properties of the phosphorylation were compared between the medullar oblongata (referred to as alpha(+] and the kidney (referred to as alpha) (Na+ + K+)-ATPases. The steady-state level of phosphorylation was achieved faster in the kidney enzymes than in the medulla oblongata enzyme. Phosphorylation without ouabain was greater in the kidney enzymes than in the brain enzymes. Furthermore, the former enzymes were inhibited by K+ much more than the latter. These findings suggest that the two isozymes of (Na+ + K+)-ATPase differ in their conformational changes during enzyme turnover.  相似文献   

8.
The effects of K+ on the phosphorylation of H+/K(+)-ATPase with inorganic phosphate were studied using H+/K(+)-ATPase purified from porcine gastric mucosa. The phosphoenzyme formed by phosphorylation with Pi was identical with the phosphoenzyme formed with ATP. The maximal phosphorylation level obtained with Pi was equal to that obtained with ATP. The Pi phosphorylation reaction of H+/K(+)-ATPase was, like that of Na+/K(+)-ATPase, a relatively slow reaction. The rates of phosphorylation and dephosphorylation were both increased by low concentrations of K+, which resulted in hardly any effect on the phosphorylation level. A decrease of the steady-state phosphorylation level was caused by higher concentrations of K+ in a noncompetitive manner, whereas no further increase in the dephosphorylation rate was observed. The decreasing effect was caused by a slow binding of K+ to the enzyme. All above-mentioned K+ effects were abolished by the specific H+/K(+)-ATPase inhibitor SCH 28080 (2-methyl-8-[phenyl-methoxy]imidazo-[1-2-a]pyrine-3-acetonitrile). Additionally, SCH 28080 caused a 2-fold increase in the affinity of H+/K(+)-ATPase for Pi. A model for the reaction cycle of H+/K(+)-ATPase fitting the data is postulated.  相似文献   

9.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

10.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

11.
The ATPase activities were studied in rat erythrocytes permeabilized with saponin. The concentrations of calcium and magnesium ions were varied within the range of 0.1-60 microM and 50-370 microM, respectively, by using EGTA-citrate buffer. The maximal activity of Ca2(+)-ATPase of permeabilized erythrocytes was by one order of magnitude higher, whereas the Ca2(+)-binding affinity was 1.5-2 times higher than that in erythrocyte ghosts washed an isotonic solution containing EGTA. Addition of the hemolysate restored the kinetic parameters of ghost Ca2(+)-ATPase practically completely, whereas in the presence of exogenous calmodulin only part of Ca2(+)-ATPase activity was recovered. Neither calmodulin nor R24571, a highly potent specific inhibitor of calmodulin-dependent reactions, influenced the Ca2(+)-ATPase activity of permeabilized erythrocytes. At Ca2+ concentrations below 0.7 microM, ouabain (0.5-1 mM) activated whereas at higher Ca2+ concentrations it inhibited the Ca2(+)-ATPase activity. Taking this observation into account the Na+/K(+)-ATPase was determined as the difference of between the ATPase activities in the presence of Na+ and K+ and in the presence of K+ alone. At physiological concentration of Mg2+ (370 microM), the addition of 0.3-1 microM Ca2+ increased Na+/K(+)-ATPase activity by 1.5-3-fold. Higher concentrations of this cation inhibited the enzyme. At low Mg2+ concentration (e.g., 50 microM) only Na+/K(+)-ATPase inhibition by Ca2+ was seen. It was found that at [NaCl] less than 20 mM furosemide was increased ouabain-inhibited component of ATPase in Ca2(+)-free media. This activating effect of furosemide was enhanced with a diminution of [Na+] upto 2 mM and did not reach the saturation level unless the 2 mM of drug was used. The activating effect of furosemide on Na+/K(+)-ATPase activity confirmed by experiments in which the ouabain-inhibited component was measured by the 86Rb+ influx into intact erythrocytes.  相似文献   

12.
Antisera to purified (Na+, K+)-ATPase raised in rabbits and in sheep were purified by an absorption procedure employing purified canine kidney (Na+, K+)-ATPase. The antibodies were fractionated into two components, one which inhibited catalytic activity, and a second which inhibited ouabain binding. Under certain conditions, the fraction that inhibited ouabain binding also inhibited catalytic activity, and the effectiveness of both was dependent to some extent on the ligands present in the incubation medium. Thus, both antibody fractions appeared to detect conformations of the enzyme that depended upon ligand-induced perturbations. When the antibody raised against catalytic activity was incubated with erythrocyte membrane fragments, an inhibition of the (Na+, K+)-ATPase occurred, but only minimal or no effect on potassium influx or on digoxin-induced inhibition of potassium flux in intact erythrocytes was noted. In a similar experiment, however, the antibody against ouabain binding significantly inhibited potassium influx, suggesting specificity in terms of the macromolecular surfaces of the pump which were exposed to the external medium. We concluded that there may be organ and species differences among (Na+, K+)-ATPase preparations. Antibodies prepared in rabbits and sheep were fractionated by absorption to dog brain enzyme. Both the antibody fraction which bound to the brain enzyme and that which did not bind inhibited the dog kidney (Na+, K+)-ATPase, but only the former inhibited dog brain (Na+, K+)-ATPase. When the two fractions were recombined, inhibition was restored to the extent of the unfractionated antibody.  相似文献   

13.
Renal sodium homeostasis is a major determinant of blood pressure and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular second messengers, either activate or inhibit proximal tubule Na(+),K(+)-ATPase. We have shown previously that phorbol ester (PMA) stimulation of endogenous PKC leads to activation of Na(+),K(+)-ATPase in cultured proximal tubule cells (OK cells) expressing the rodent Na(+), K(+)-ATPase alpha-subunit. We have now demonstrated that the treatment with PMA leads to an increased amount of Na(+),K(+)-ATPase molecules in the plasmalemma, which is proportional to the increased enzyme activity. Colchicine, dinitrophenol, and potassium cyanide prevented the PMA-dependent stimulation of activity without affecting the increased level of phosphorylation of the Na(+), K(+)-ATPase alpha-subunit. This suggests that phosphorylation does not directly stimulate Na(+),K(+)-ATPase activity; instead, phosphorylation may be the triggering mechanism for recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Transfected cells expressing either an S11A or S18A mutant had the same basal Na(+),K(+)-ATPase activity as cells expressing the wild-type rodent alpha-subunit, but PMA stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. PMA treatment led to phosphorylation of the alpha-subunit by stimulation of PKC-beta, and the extent of this phosphorylation was greatly reduced in the S11A and S18A mutants. These results indicate that both Ser11 and Ser18 of the alpha-subunit are essential for PMA stimulation of Na(+), K(+)-ATPase activity, and that these amino acids are phosphorylated during this process. The results presented here support the hypothesis that PMA regulation of Na(+),K(+)-ATPase is the result of an increased number of Na(+),K(+)-ATPase molecules in the plasma membrane.  相似文献   

14.
The Na,K-ATPase provides the driving force for many ion transport processes through control of Na(+) and K(+) concentration gradients across the plasma membranes of animal cells. It is composed of two subunits, alpha and beta. In many tissues, predominantly in kidney, it is associated with a small ancillary component, the gamma-subunit that plays a modulatory role. A novel 15-kDa protein, sharing considerable homology to the gamma-subunit and to phospholemman (PLM) was identified in purified Na,K-ATPase preparations from rectal glands of the shark Squalus acanthias, but was absent in pig kidney preparations. This PLM-like protein from shark (PLMS) was found to be a substrate for both PKA and PKC. Antibodies to the Na, K-ATPase alpha-subunit coimmunoprecipitated PLMS. Purified PLMS also coimmunoprecipitated with the alpha-subunit of pig kidney Na, K-ATPase, indicating specific association with different alpha-isoforms. Finally, PLMS and the alpha-subunit were expressed in stoichiometric amounts in rectal gland membrane preparations. Incubation of membrane bound Na,K-ATPase with non-solubilizing concentrations of C(12)E(8) resulted in functional dissociation of PLMS from Na,K-ATPase and increased the hydrolytic activity. The same effects were observed after PKC phosphorylation of Na,K-ATPase membrane preparations. Thus, PLMS may function as a modulator of shark Na,K-ATPase in a way resembling the phospholamban regulation of the Ca-ATPase.  相似文献   

15.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

16.
We have studied the properties of membrane-bound ATPase of a facultatively anaerobic alkalophile. The enzyme could not be solubilized without detergent, suggesting an integral membrane protein. The activity was accelerated by NH4+ and acetate anion, and inhibited by NH3-. The enzyme required Mg2+ or Mn2+ as a divalent cation for the maximal activity. In addition to ATP, the enzyme utilized other triphosphates of nucleosides as a substrate, but not di- nor monophosphates. The enzyme was suggested to crossreact with an antibody against the alpha-subunit of Na+/K+-ATPase from dog kidney.  相似文献   

17.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from renal proximal tubule basolateral membranes (BLM) by protein kinase C (PKC). Two PKC isoforms were identified in BLM, one of 75 kDa and the other of 135 kDa. The former correlates with the PKC isoforms described in the literature but the latter seems to be a novel isoform, not yet identified. Both PKC isoforms of BLM are functional since a protein kinase C activator, TPA, increased the total hydroxylamine-resistant 32P(i) incorporation from [gamma-32P]ATP into the BLM. In parallel, TPA stimulated the Na(+)-ATPase activity from BLM in a dose-dependent manner, the effect being reversed by the PKC inhibitor sphingosine. The stimulatory effect of TPA on Na(+)-ATPase involved an increase in the V(max) (from 13.4+/-0.6 nmol P(i) mg(-1) min(-1) to 25.2+/-1.4 nmol P(i) mg(-1) min(-1), in the presence of TPA, P<0.05) but did not change the apparent affinity for Na(+) (K(0.5)=14.5+/-2.1 mM in control and 10.0+/-2.1 mM in the presence of TPA, P>0.07). PKC involvement was further confirmed by stimulation of the Na(+)-ATPase activity by the catalytic subunit of PKC (PKC-M). Finally, the phosphorylation of an approx. 100 kDa protein in the BLM (the suggested molecular mass of Na(+)-ATPase [1]) was induced by TPA. Taken together, these findings indicate that PKCs resident in BLM stimulate Na(+)-ATPase activity which could represent an important mechanism of regulation of proximal tubule Na(+) reabsorption.  相似文献   

18.
We have previously demonstrated that Na+, K(+)-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the alpha subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of alpha isoforms (alpha1 and alpha2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K(+)-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0+/-0.1 microM) than the activity of innervated membranes (I50=2.6+/-0.2 microM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K(+)-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of alpha1 and alpha2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K(+)-ATPase alpha-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

19.
The kinetic properties of a gill Na(+), K(+)-ATPase from the freshwater shrimp Macrobrachium olfersii were studied using p-nitrophenylphosphate (PNPP) as a substrate. Sucrose gradient centrifugation of the microsomal fraction revealed a single protein fraction that hydrolyzed PNPP. The Na(+), K(+)-ATPase hydrolyzed PNPP (K(+)-phosphatase activity) obeying Michaelis-Menten kinetics with K(M)=1.72+/-0.06 mmol l(-1) and V(max)=259.1+/-11.6 U mg(-1). ATP was a competitive inhibitor of K(+)-phosphatase activity with a K(i)=50.1+/-2.5 micromol l(-1). A cooperative effect for the stimulation of the enzyme by potassium (K(0.5)=3.62+/-0.18 mmol l(-1); n(H)=1.5) and magnesium ions (K(0.5)=0.61+/-0.02 mmol l(-1), n(H)=1.3) was found. Sodium ions had no effect on K(+)-phosphatase activity up to 1.0 mmol l(-1), but above 80 mmol l(-1) inhibited the original activity by approximately 75%. In the range of 0-10 mmol l(-1), sodium ions did not affect stimulation of the K(+)-phosphatase activity by potassium ions. Ouabain (K(i)=762.4+/-26.7 micromol l(-1)) and orthovanadate (K(i)=0.25+/-0.01 micromol l(-1)) completely inhibited the K(+)-phosphatase activity, while thapsigargin, oligomycin, sodium azide and bafilomycin were without effect. These data demonstrate that the activity measured corresponds to that of the K(+)-phosphatase activity of the Na(+), K(+)-ATPase alone and suggest that the use of PNPP as a substrate to characterize K(+)-phosphatase activity may be a useful technique in comparative osmoregulatory studies of Na(+), K(+)-ATPase activities in crustacean gill tissues, and for consistent comparisons with well known mechanistic properties of the vertebrate enzyme.  相似文献   

20.
Phosphorylation of Na+/K+-ATPase by cGMP-dependent protein kinase (PKG) has been studied in enzymes purified from pig, dog, sheep and rat kidneys, and in Xenopus oocytes. PKG phosphorylates the alpha-subunits of all animal species investigated. Phosphorylation of the beta-subunit was not observed. The stoichiometry of phosphorylation estimated for pig, sheep and dog renal Na+/K+-ATPase is 3.5, 2.2 and 2.1 mol Pi per mol alpha-subunit, respectively. Proteolytic fingerprinting of the pig alpha1-subunits phosphorylated by PKG using specific antibodies raised against N-terminus or C-terminus reveals that phosphorylation sites are located within the intracellular loop of the alpha-subunit between the 35 kDa N-terminal and 27 kDa C-terminal fragments. Phosphorylation sites within the alpha1-subunit of the purified Na+/K+-ATPase do not appear to be easily accessible for PKG since incorporation of Pi requires 0.2% of Triton X-100. Administration of cGMP and PKG in the presence of 5 mm ATP, which prevents inactivation of the Na+/K+-ATPase by detergent, leads to stimulation of hydrolytic activity by 61%. Administration of 50 microm of cGMP or dbcGMP in yolk-free homogenates of Xenopus oocytes leads to stimulation of ouabain-dependent ATPase activity by 130-198% and to incorporation of 33P into the alpha-subunit without the detergent. Hence, PKG plays regulatory role in active transmembraneous transport of Na+ and K+ via phosphorylation of the catalytic subunit of the Na+/K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号