首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we have analyzed the selectivity of four ethidium derivatives and ethidium itself toward different G-quadruplex species, with electrospray mass spectrometry and competitive equilibrium dialysis and evaluated their inhibitory properties against telomerase. A selectivity profile may be obtained through electrospray ionization mass spectrometry (ESI-MS), which is in fair agreement with competitive equilibrium dialysis data. It also provides unambiguous data on the number of binding sites per nucleic acid (maximal number of two ethidium derivatives per quadruplex, in agreement with external stacking). Our experiments also demonstrate that one compound (4) is the most active and selective G-quadruplex ligand within this series and the most selective telomerase inhibitor in a modified TRAP-G4 assay.  相似文献   

2.
Benzoindoloquinolines interact with DNA tetraplexes and inhibit telomerase   总被引:4,自引:0,他引:4  
Telomeric G-rich single-stranded DNA can adopt a G-tetraplex structure which has been shown to inhibit telomerase activity. We have examined benzoindoloquinolines derivatives for their ability to stabilize an intramolecular G-quadruplex. The increase in T(m) value of the G-quadruplex was associated with telomerase inhibition in vitro.  相似文献   

3.
Fluorescence-based melting assays for studying quadruplex ligands   总被引:2,自引:0,他引:2  
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomeres and telomerase are relevant targets in oncology, and telomere ligands and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we have analysed the FRET method used to measure the stabilization and selectivity of quadruplex ligands towards the human telomeric G-quadruplex. The stabilization value depends on the nature of the fluorescent tags, the incubation buffer, and the method chosen for T(m) calculation, complicating a direct comparison of the results obtained by different laboratories.  相似文献   

4.
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we describe ethidium derivatives that stabilize G-quadruplexes. These molecules were shown to increase the melting temperature of an intramolecular quadruplex structure, as shown by fluorescence and absorbance measurements, and to facilitate the formation of intermolecular quadruplex structures. In addition, these molecules may be used to reveal the formation of multi-stranded DNA structures by standard fluorescence imaging, and therefore become fluorescent probes of quadruplex structures. This recognition was associated with telomerase inhibition in vitro: these derivatives showed a potent anti-telomerase activity, with IC50 values of 18–100 nM in a standard TRAP assay.  相似文献   

5.
6.
7.
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicative senescence. The repeated sequence forming a G-overhang is able to adopt a peculiar four-stranded DNA structure in vitro called a G-quadruplex, which is a poor substrate for telomerase. Small molecule ligands that selectively stabilize the telomeric G-quadruplex induce telomere shortening and a delayed growth arrest. Here we show that the G-quadruplex ligand telomestatin has a dramatic effect on the conformation of intracellular G-overhangs. Competition experiments indicate that telomestatin strongly binds in vitro and in vivo to the telomeric overhang and impairs its single-stranded conformation. Long-term treatment of cells with telomestatin greatly reduces the G-overhang size, as evidenced by specific hybridization or telomeric oligonucleotide ligation assay experiments, with a concomitant delayed loss of cell viability. In vivo protection experiments using dimethyl sulfate also indicate that telomestatin treatment alters the dimethyl sulfate effect on G-overhangs, a result compatible with the formation of a local quadruplex structure at telomeric overhang. Altogether these experiments strongly support the hypothesis that the telomeric G-overhang is an intracellular target for the action of telomestatin.  相似文献   

8.
DNA aptamers as potential anti-HIV agents   总被引:3,自引:0,他引:3  
Guanine (G)-rich DNA sequences can adopt stable G-quadruplex structures by G-tetrad hydrogen-bonding and hydrophobic stacking. Recently, it has been shown that a DNA sequence forms an aptamer (termed 93del) and adopts a novel dimeric quadruplex folding topology in K+ solution. This aptamer exhibits anti-HIV1 integrase activity in the nanomolar range in vitro. A docking-based model of the 93del-integrase complex positions the DNA aptamer within a channel of the tetrameric integrase. This mutual fitting blocks several catalytic amino acid residues that are essential for integrase function, and accounts for the anti-HIV1 activity of the 93del aptamer.  相似文献   

9.
We have recently described an engineered zinc finger protein (Gq1) that binds with high specificity to the intramolecular G-quadruplex formed by the human telomeric sequence 5'-(GGTTAG)(5)-3', and that inhibits the activity of the enzyme telomerase in vitro. Here we report site-directed mutagenesis, biophysical, and molecular modeling studies that provide new insights into quadruplex recognition by the zinc finger scaffold. We show that any one finger of Gq1 can be replaced with the corresponding finger of Zif268, without significant loss of quadruplex affinity or quadruplex versus duplex discrimination. Replacement of two fingers, with one being finger 2, of Gq1 by Zif268 results in significant impairment of quadruplex recognition and loss of discrimination. Molecular modeling suggests that the zinc fingers of Gq1 can bind to the human parallel-stranded quadruplex structure in a stable arrangement, whereas Zif268-quadruplex models show significantly weaker binding energy. Modeling also suggests that an important role of the key protein finger residues in the Gq1-quadruplex complex is to maintain Gq1 in an optimum conformation for quadruplex recognition.  相似文献   

10.
Telomerase recognizes G-quadruplex and linear DNA as distinct substrates   总被引:1,自引:0,他引:1  
Oganesian L  Graham ME  Robinson PJ  Bryan TM 《Biochemistry》2007,46(40):11279-11290
Telomeric DNA can assemble into a nonlinear, higher-order conformation known as a G-quadruplex. Here, we demonstrate by electrospray ionization mass spectrometry that the two repeat telomeric sequence d(TGGGGTTGGGGT) from Tetrahymena thermophila gives rise to a novel parallel four-stranded G-quadruplex in the presence of sodium. The G-quadruplex directly interacts with the catalytic subunit of Tetrahymena telomerase (TERT) with micromolar affinity, and the presence of telomerase RNA is not obligatory for this interaction. Both N- and C-terminal halves of TERT bind the G-quadruplex independently. This G-quadruplex is a robust substrate for both recombinant and cell extract-derived telomerase in vitro. Furthermore, the G-quadruplex weakens the affinity of wild-type telomerase for the incoming nucleotide (dTTP) and likely perturbs the nucleotide binding pocket of the enzyme. In agreement with this, a lysine to alanine substitution at amino acid 538 (K538A) within motif 1 of TERT dramatically reduces the ability of telomerase to extend G-quadruplex but not linear DNA. The K538A mutant retains binding affinity for the quadruplex. This suggests that telomerase undergoes changes in conformation in its active site to specifically accommodate binding and subsequent extension of G-quadruplex DNA. We propose that telomerase recognizes G-quadruplex DNA as a substrate that is distinct from linear DNA.  相似文献   

11.
The NMR structure of the parallel-stranded DNA quadruplex d(TTAGGGT)(4), containing the human telomeric repeat, has been determined in solution in complex with a fluorinated pentacyclic quino[4,3,2-kl]acridinium cation (RHPS4). RHPS4 has been identified as a potent inhibitor of telomerase at submicromolar levels (IC(50) value of 0.33(+/-0.13)microM), exhibiting a wide differential between telomerase inhibition and acute cellular toxicity. All of the data point to RHPS4 exerting its chemotherapeutic potency through interaction with, and stabilisation of, four-stranded G-quadruplex structures. RHPS4 forms a dynamic interaction with d(TTAGGGT)(4), as evident from 1H and 19F linewidths, with fast exchange between binding sites induced at 318 K. Perturbations to DNA chemical shifts and 24 intermolecular nuclear Overhauser effects (NOEs) identify the 5'-ApG and 5'-GpT steps as the principle intercalation sites; a structural model has been refined using NOE-restrained molecular dynamics. The central G-tetrad core remains intact, with drug molecules stacking at the ends of the G-quadruplex. The partial positive charge on position 13-N of the acridine ring appears to act as a "pseudo" potassium ion and is positioned above the centre of the G-tetrad in the region of high negative charge density. In both ApG and GpT intercalation sites, the drug is seen to converge to the same orientation in which the pi-system of the drug overlaps primarily with two bases of each G-tetrad. The drug is held in place by stacking interactions with the G-tetrads; however, there is some evidence for a more dynamic, weakly stabilised A-tetrad that stacks partially on top of the drug at the 5'-end of the sequence. Together, the interactions of RHPS4 increase the t(m) of the quadruplex by approximately 20 degrees C. There is no evidence for drug intercalation within the G-quadruplex; however, the structural model strongly supports end-stacking interactions with the terminal G-tetrads.  相似文献   

12.
13.
G-quadruplex structures of DNA represent a potentially useful target for anticancer drugs. Stabilisation of this arrangement at the ends of chromosomes may inhibit the action of telomerase, an enzyme involved in immortalization of cancer cells. Appropriately substituted amido anthracenediones are effective G-quadruplex stabilizers, but no information is available as yet on the possible modulation of G-quadruplex recognition and telomerase inhibition produced by the direction of the amide bond. To understand the basis of amido anthracenedione selectivity, we have synthesized a number of derivatives bearing the -CO-NH- or -NH-CO- group linked to the planar anthraquinone (AQ) moiety at 2,6 and 2,7 positions. The various isomers were tested in terms of telomerase inhibition, determined by the TRAP assay, G-quadruplex stabilisation measured by the increase in melting temperature of the appropriately folded oligonucleotide using FRET, and conformational and G4 binding properties examined by molecular modelling techniques. In all cases, enzymatic inhibition and G-quadruplex stabilization were directly related, which strongly supports the proposed molecular mechanism of telomerase interference. Interestingly, the AQ-NH-CO- arrangement performs invariantly better than the AQ-CO-NH- arrangement, showing a clear preference among isomeric derivatives. Theoretical calculations suggest that the former amide arrangement is co-planar with the aromatic system, whereas the latter is tilted by about 30 degrees when considering the most stable conformation. A more extended planar surface would allow more efficient stacking interactions with the quadruplex structure, hence more effective telomerase inhibition.  相似文献   

14.
The integrity of telomeres in most cancer cells is maintained by the action of the telomerase enzyme complex, which catalyzes the synthesis of telomeric DNA repeats in order to replace those lost during replication. Telomerase is especially up-regulated in metastatic cancer and is thus emerging as a major therapeutic target. One approach to telomerase inhibition involves the sequestration of the single-stranded 3' ends of telomeric DNA into higher-order quadruplex structures. We have recently shown that tetra-substituted naphthalene diimide compounds are potent quadruplex-stabilizing molecules with telomerase inhibitory activity in cells. We show here that one such compound, BMSG-SH-3, which has been optimized by computer modeling, has significant in vivo antitumor activity against a model for pancreatic cancer, a cancer that is especially resistant to current therapies. A large reduction in telomerase activity in treated tumors was observed and the naphthalene diimide compound was found to be selectively localized in the treated tumors. We find that the expression of the therapeutically important chaperone protein HSP90, a regulator of telomerase is also reduced in vivo by BMSG-SH-3 treatment. The compound is a potent stabilizer of two G-quadruplex sequences found in the promoter region of the HSP90 gene, as well as a G-quadruplex from human telomeric DNA. It is proposed that the simultaneous targeting of these quadruplexes may be an effective anti-tumor strategy.  相似文献   

15.
G-quadruplex structures of telomeric sequences are of growing interest because they inhibit telomerase, an enzyme involved in the maintenance of telomere length of cancer cells. As we have shown previously, the antiparallel structure of G-quadruplexes can be cross-linked in vitro by the anti-tumour drug cisplatin. The question arises whether platination of quadruplex structures of human telomeric sequences by cisplatin could be relevant from a biological point of view. Therefore, we have compared the kinetics of reactions of the diaqua form of cisplatin, cis-[Pt(NH(3))(2)(H(2)O)(2)](2+), with the human telomeric quadruplex structure, a duplex DNA and a single-stranded DNA containing one specific platination GG site. The ratio between the platination rate constants was obtained using two intramolecular competition experiments: either a construct with a junction between duplex DNA containing a unique GG platination site and the quadruplex structure of the human telomeric sequence AG(3)(T(2)AG(3))(3), or a construct with a junction between duplex DNA and a single strand containing each a unique GG platination site. Those competition experiments allowed us to conclude that the platination of the quadruplex is favoured over that of the GG duplex by a factor of about two whereas the GG duplex is platinated three times faster than the GG single strand.  相似文献   

16.
It is well established that G-quadruplex DNA structures form at ciliate telomeres and their formation throughout the cell-cycle by telomere-end-binding proteins (TEBPs) has been analyzed. During replication telomeric G-quadruplex structure has to be resolved to allow telomere replication by telomerase. It was shown that both phosphorylation of TEBPβ and binding of telomerase are prerequisites for this process, but probably not sufficient to unfold G-quadruplex structure in timely manner to allow replication to proceed. Here we describe a RecQ-like helicase required for unfolding of G-quadruplex structures in vivo. This helicase is highly reminiscent of human RecQ protein-like 4 helicase as well as other RecQ-like helicase found in various eukaryotes and E. coli. In situ analyses combined with specific silencing of either the telomerase or the helicase by RNAi and co-immunoprecipitation experiments demonstrate that this helicase is associated with telomerase during replication and becomes recruited to telomeres by this enzyme. In vitro assays showed that a nuclear extract prepared from cells in S-phase containing both the telomerase as well as the helicase resolves telomeric G-quadruplex structure. This finding can be incorporated into a mechanistic model about the replication of telomeric G-quadruplex structures during the cell cycle.  相似文献   

17.
The telomeric G-rich single-stranded DNA d(T(2)G(8)) can adopt in vitro G-quadruplex structure, even at low DNA concentration. Studies on stability of telomeric structures, has gained importance recently as the molecules, which can stabilize quadruplex structure, can inhibit cancer progression. In this study, G-quadruplex structure is formed by 1.0 mM NH(4)(I) ion. Stability of G-quadruplex complex is studied on interaction with acridine using CD and MALDI-TOF mass spectrometry. MALDI-TOF mass spectrometric experiments were carried out mainly to observe the noncovalent drug-DNA interactions at low concentration. From MALDI-TOF spectrum, it is identified that three ammonium ions are required for the formation of G-quadruplex structure and to provide stability to NH(4)(I)-G-quadruplex complex. With MALDI-TOF it is evident that two acridine molecules interact with NH(4)(I) G-quadruplex complex. CD studies, shows that stability of NH(4)(I) G-quadruplex, decreases and conformation change takes place on interaction with acridine. Interaction with drug reduces mostly due to transformation of G-quadruplex complex to single stranded DNA.  相似文献   

18.
Telomere length homeostasis is a prerequisite for the generation and growth of cancer. In >85% cancer cells, telomere length is maintained by telomerase that add telomere repeats to the end of telomere DNA. Because the G-rich strand of telomere DNA can fold into G-quadruplex that inhibits telomerase activity, stabilizing telomere quadruplex by small molecules is emerging as a potential therapeutic strategy against cancer. In these applications, the specificity of small molecules toward quadruplex over other forms of DNA is an important property to ensure no processes other than telomere elongation are interrupted. The evaluating assays currently available more or less have difficulty identifying or distinguishing quadruplex-irrelevant effect from quadruplex stabilization. Here, we describe an exonuclease I hydrolysis assay that evaluates quadruplex stabilization by DNA-interacting compounds, discriminates inhibitory effect from different sources and helps determine the optimal compound concentration.  相似文献   

19.
The design, synthesis, biophysical and biochemical evaluation is presented of a new series of benzylamino-substituted acridines as G-quadruplex binding telomerase inhibitors. Replacement of the previously reported anilino substituents by benzylamino groups results in enhanced quadruplex interaction, and for one compound, superior telomerase inhibitory activity.  相似文献   

20.
The stable trioxatriangulenium ion (TOTA) has previously been shown to bind to and photooxidize duplex DNA, leading to cleavage at G residues, particularly 5'-GG-3' repeats. Telomeric DNA consists of G-rich sequences that may exist in either duplex or G-quadruplex forms. We have employed electrospray ionization mass spectrometry (ESI-MS) to investigate the interactions between TOTA and duplex DNA or G-quadruplex DNA. A variety of duplex decamer oligodeoxynucleotides form complexes with TOTA that can be detected by ESI-MS, and the stoichiometry and fragmentation patterns observed are commensurate with an intercalative binding mode. TOTA also forms complexes with four-stranded and hairpin-dimer G-quadruplex oligodeoxynucleotides that can be detected by ESI-MS. Both the stoichiometry and the fragmentation patterns observed by ESI-MS are different than those observed for G-tetrad end-stacking binding ligands. We have carried out (1)H NMR titrations of a four-stranded G-quadruplex in the presence of TOTA. Addition of up to 1 equiv of TOTA is accompanied by pronounced upfield shifts of the G-tetrad imino proton resonances in the NMR, which is similar to the effect observed for G-tetrad end-stacking ligands. At higher ratios of added TOTA, there is evidence for additional binding modes. Duplex DNA containing either human telomeric repeats (T(2)AG(3))(4) or the Tetrahymena telomeric repeats (T(2)G(4))(4) are readily photooxidized by TOTA, the major sites of oxidation being the central guanine residues in each telomeric repeat. These telomeric repeats were incorporated into duplex/quadruplex chimeras in which the repeats adopt a G-quadruplex structure. Analysis by denaturing polyacrylamide gel electrophoresis reveals significantly less TOTA photocleavage of these quadruplex telomeric repeats when compared to the duplex repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号