首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-stranded RNA viruses package their genomes into capsids enclosing fixed volumes. We assayed the ability of bacteriophage MS2 coat protein to package large, defined fragments of its genomic, single-stranded RNA. We show that the efficiency of packaging into a T = 3 capsid in vitro is inversely proportional to RNA length, implying that there is a free-energy barrier to be overcome during assembly. All the RNAs examined have greater solution persistence lengths than the internal diameter of the capsid into which they become packaged, suggesting that protein-mediated RNA compaction must occur during assembly. Binding ethidium bromide to one of these RNA fragments, which would be expected to reduce its flexibility, severely inhibited packaging, consistent with this idea. Cryo-EM structures of the capsids assembled in these experiments with the sub-genomic RNAs show a layer of RNA density beneath the coat protein shell but lack density for the inner RNA shell seen in the wild-type virion. The inner layer is restored when full-length virion RNA is used in the assembly reaction, implying that it becomes ordered only when the capsid is filled, presumably because of the effects of steric and/or electrostatic repulsions. The cryo-EM results explain the length dependence of packaging. In addition, they show that for the sub-genomic fragments the strongest ordered RNA density occurs below the coat protein dimers forming the icosahedral 5-fold axes of the capsid. There is little such density beneath the proteins at the 2-fold axes, consistent with our model in which coat protein dimers binding to RNA stem-loops located at sites throughout the genome leads to switching of their preferred conformations, thus regulating the placement of the quasi-conformers needed to build the T = 3 capsid. The data are consistent with mutual chaperoning of both RNA and coat protein conformations, partially explaining the ability of such viruses to assemble so rapidly and accurately.  相似文献   

2.
Viruses use sophisticated mechanisms to allow the specific packaging of their genome over that of host nucleic acids. We examined the in vitro assembly of the Cowpea chlorotic mottle virus (CCMV) and observed that assembly with viral RNA follows two different mechanisms. Initially, CCMV capsid protein (CP) dimers bind RNA with low cooperativity and form virus-like particles of 90 CP dimers and one copy of RNA. Longer incubation reveals a different assembly path. At a stoichiometry of about ten CP dimers per RNA, the CP slowly folds the RNA into a compact structure that can be bound with high cooperativity by additional CP dimers. This folding process is exclusively a function of CP quaternary structure and is independent of RNA sequence. CP-induced folding is distinct from RNA folding that depends on base-pairing to stabilize tertiary structure. We hypothesize that specific encapsidation of viral RNA is a three-step process: specific binding by a few copies of CP, RNA folding, and then cooperative binding of CP to the "labeled" nucleoprotein complex. This mechanism, observed in a plant virus, may be applicable to other viruses that do not halt synthesis of host nucleic acid, including HIV.  相似文献   

3.
Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified a single serine residue within the RNA binding region that is required for normal phosphorylation of this protein. The importance of capsid phosphorylation in virus replication was demonstrated by the fact that recombinant viruses encoding hypophosphorylated capsids replicated at much lower titers and were less cytopathic than wild-type virus. Nonphosphorylated mutant capsid proteins exhibited higher affinities for viral RNA than wild-type phosphorylated capsids. Capsid protein isolated from wild-type strain virions bound viral RNA more efficiently than cell-associated capsid. However, the RNA-binding activity of cell-associated capsids increased dramatically after treatment with phosphatase, suggesting that the capsid is dephosphorylated during virus assembly. In vitro assays indicate that the capsid may be a substrate for protein phosphatase 1A. As capsid is heavily phosphorylated under conditions where virus assembly does not occur, we propose that phosphorylation serves to negatively regulate binding of viral genomic RNA. This may delay the initiation of nucleocapsid assembly until sufficient amounts of virus glycoproteins accumulate at the budding site and/or prevent nonspecific binding to cellular RNA when levels of genomic RNA are low. It follows that at a late stage in replication, the capsid may undergo dephosphorylation before nucleocapsid assembly occurs.  相似文献   

4.
Although many viruses have been crystallized and the protein capsid structures have been determined by x-ray crystallography, the nucleic acids often cannot be resolved. This is especially true for RNA viruses. The lack of information about the conformation of DNA/RNA greatly hinders our understanding of the assembly mechanism of various viruses. Here we combine a coarse-grain model and a Monte Carlo method to simulate the distribution of viral RNA inside the capsid of cowpea chlorotic mottle virus. Our results show that there is very strong interaction between the N-terminal residues of the capsid proteins, which are highly positive charged, and the viral RNA. Without these residues, the binding energy disfavors the binding of RNA by the capsid. The RNA forms a shell close to the capsid with the highest densities associated with the capsid dimers. These high-density regions are connected to each other in the shape of a continuous net of triangles. The overall icosahedral shape of the net overlaps with the capsid subunit icosahedral organization. Medium density of RNA is found under the pentamers of the capsid. These findings are consistent with experimental observations.  相似文献   

5.
There is now considerable evidence that a specific site (or sites) in the genome of an RNA virus interacts with a viral protein to initiate the assembly of the virus ribonucleoprotein or nucleocapsid. We describe the progress that has been made in defining these elements for a number of different viruses: the togavirus, Sindbis virus; the coronavirus, mouse hepatitis virus; influenza A virus; several retroviruses; and the hepadnavirus, hepatitis B virus. The importance of cis-acting elements in packaging has been established for all of these viruses. For Sindbis virus, specificity in the binding of the RNA element to a region of the viral capsid protein in vitro has also been demonstrated.  相似文献   

6.
Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging.  相似文献   

7.
A large number of single-stranded RNA viruses, which form a major class of all viruses, co-assemble their protein container and their genomic material. The multiple roles of the viral genome in this process are presently only partly understood. Recent experimental results indicate that RNA, in addition to its function as a repository for genetic information, could play important functional roles during the assembly of the viral protein containers. An investigation of the impact of genomic RNA on the association of the protein subunits may therefore provide further insights into the mechanism of virus assembly. We study here the impact of viral RNA on the association rates of the capsid proteins during virus assembly. As a case study, we consider the viral capsid of bacteriophage MS2, which is formed from 60 asymmetric (AB) and 30 symmetric (CC) protein dimers. Using Brownian dynamics simulations, we investigate the effect of the binding of an RNA stem-loop (the translational repressor) on the association rates of the capsid protein dimers. Our analysis shows that translational repressor binding results in self-association of AB dimers being inhibited, whilst association of AB with CC dimers is greatly enhanced. This provides an explanation for experimental results in which an alternating assembly pattern of AB and CC dimer addition to the growing assembly intermediate has been observed to be the dominant mode of assembly. The presence of the RNA hence dramatically decreases the number of dominant assembly pathways and thereby reduces the complexity of the self-assembly process of these viruses.  相似文献   

8.
9.
10.
Flock house virus (FHV) is a bipartite, positive-strand RNA insect virus that encapsidates its two genomic RNAs in a single virion. It provides a convenient model system for studying the principles underlying the copackaging of multipartite viral RNA genomes. In this study, we used a baculovirus expression system to determine if the uncoupling of viral protein synthesis from RNA replication affected the packaging of FHV RNAs. We found that neither RNA1 (which encodes the viral replicase) nor RNA2 (which encodes the capsid protein) were packaged efficiently when capsid protein was supplied in trans from nonreplicating RNA. However, capsid protein synthesized in cis from replicating RNA2 packaged RNA2 efficiently in the presence and absence of RNA1. These results demonstrated that capsid protein translation from replicating RNA2 is required for specific packaging of the FHV genome. This type of coupling between genome replication and translation and RNA packaging has not been observed previously. We hypothesize that RNA2 replication and translation must be spatially coordinated in FHV-infected cells to facilitate retrieval of the viral RNAs for encapsidation by newly synthesized capsid protein. Spatial coordination of RNA and capsid protein synthesis may be key to specific genome packaging and assembly in other RNA viruses.  相似文献   

11.
The vast majority of viruses consist of a nucleic acid surrounded by a protective icosahedral protein shell called the capsid. During viral infection of a host cell, the timing and efficiency of the assembly process is important for ensuring the production of infectious new progeny virus particles. In the class of single-stranded RNA (ssRNA) viruses, the assembly of the capsid takes place in tandem with packaging of the ssRNA genome in a highly cooperative co-assembly process. In simple ssRNA viruses such as the bacteriophage MS2 and small RNA plant viruses such as STNV, this cooperative process results from multiple interactions between the protein shell and sites in the RNA genome which have been termed packaging signals. Using a stochastic assembly algorithm which includes cooperative interactions between the protein shell and packaging signals in the RNA genome, we demonstrate that highly efficient assembly of STNV capsids arises from a set of simple local rules. Altering the local assembly rules results in different nucleation scenarios with varying assembly efficiencies, which in some cases depend strongly on interactions with RNA packaging signals. Our results provide a potential simple explanation based on local assembly rules for the ability of some ssRNA viruses to spontaneously assemble around charged polymers and other non-viral RNAs in vitro.  相似文献   

12.
13.
14.
15.
Using a recombinant, = 1 Satellite Tobacco Necrosis Virus (STNV)-like particle expressed in Escherichia coli, we have established conditions for in vitro disassembly and reassembly of the viral capsid. In vivo assembly is dependent on the presence of the coat protein (CP) N-terminal region, and in vitro assembly requires RNA. Using immobilised CP monomers under reassembly conditions with “free” CP subunits, we have prepared a range of partially assembled CP species for RNA aptamer selection. SELEX directed against the RNA-binding face of the STNV CP resulted in the isolation of several clones, one of which (B3) matches the STNV-1 genome in 16 out of 25 nucleotide positions, including across a statistically significant 10/10 stretch. This 10-base region folds into a stem-loop displaying the motif ACAA and has been shown to bind to STNV CP. Analysis of the other aptamer sequences reveals that the majority can be folded into stem-loops displaying versions of this motif. Using a sequence and secondary structure search motif to analyse the genomic sequence of STNV-1, we identified 30 stem-loops displaying the sequence motif AxxA. The implication is that there are many stem-loops in the genome carrying essential recognition features for binding STNV CP. Secondary structure predictions of the genomic RNA using Mfold showed that only 8 out of 30 of these stem-loops would be formed in the lowest-energy structure. These results are consistent with an assembly mechanism based on kinetically driven folding of the RNA.  相似文献   

16.
Many single-stranded RNA viruses self-assemble their protein containers around their genomes. The roles that the RNA plays in this assembly process have mostly been ignored, resulting in a protein-centric view of assembly that is unable to explain adequately the fidelity and speed of assembly in such viruses. Using bacteriophage MS2, we demonstrate here via a combination of mass spectrometry and kinetic modelling how viral RNA can bias assembly towards only a small number of the many possible assembly pathways, thus increasing assembly efficiency. Assembly reactions have been studied in vitro using phage coat protein dimers, the known building block of the T = 3 shell, and short RNA stem-loops based on the translational operator of the replicase cistron, a 19 nt fragment (TR). Mass spectrometry has unambiguously identified two on-pathway intermediates in such reactions that have stoichiometry consistent with formation of either a particle 3-fold or 5-fold axis. These imply that there are at least two sub-pathways to the final capsid. The flux through each pathway is controlled by the length of the RNA stem-loop triggering the assembly reaction and this effect can be understood in structural terms. The kinetics of intermediate formation have been studied and show steady-state concentrations for intermediates between starting materials and the T = 3 shell, consistent with an assembly process in which all the steps are in equilibrium. These data have been used to derive a kinetic model of the assembly reaction that in turn allows us to determine the dominant assembly pathways explicitly, and to estimate the effect of the RNA on the free energy of association between the assembling protein subunits. The results reveal that there are only a small number of dominant assembly pathways, which vary depending on the relative ratios of RNA and protein. These results suggest that the genomic RNA plays significant roles in defining the precise assembly sub-pathway followed to create the final capsid.  相似文献   

17.
The 3' nontranslated region (NTR) of the pestivirus Bovine viral diarrhea virus (BVDV), a close relative of human Hepatitis C virus, consists of three stem-loops which are separated by two single-stranded regions. As in other positive-stranded RNA viruses, the 3' NTR of pestiviruses is involved in crucial processes of the viral life cycle. While several studies characterized cis-acting elements within the 3' NTR of a BVDV replicon, there are no studies addressing the significance of these elements in the context of a replicating virus. To examine the functional importance of 3' NTR elements, a set of 4-base deletions and deletions of each of the three stem-loops were introduced into an infectious BVDV cDNA clone. Emerging mutant viruses were characterized with regard to plaque phenotype, growth kinetics, and synthesis of viral RNA. The results indicated that presence of stem-loop (SL) I and the 3'-terminal part of the single-stranded region between stem-loops I and II are indispensable for pestiviral replication. In contrast, deletions within SL II and SL III as well as absence of either SL II or SL III still allowed efficient viral replication; however, a mutant RNA lacking both SL II and SL III was not infectious. The results of this study provide a detailed map of the essential and nonessential elements within the 3' NTR of BVDV and contribute to our understanding of sequence and structural elements important for efficient viral replication of pestiviruses in natural host cells.  相似文献   

18.
19.
The nucleocapsid (NC) protein plays many roles in the life cycle of human immunodeficiency virus type-1 (HIV-1). Previously we selected the NC binding RNA aptamers from diverse forms of RNA libraries. Here we used one of the RNA aptamers to the NC protein, N70-13, and tested its effect on NC protein in vitro and in cells. The high affinity RNA aptamer completely abolished NC binding to the stable transactivation response hairpin and psi RNA stem-loops of HIV-1 RNA. When it was expressed in cells as an intramer it inhibited the packaging of viral genomic RNA and therefore promises to be an effective anti-HIV therapeutic tool.  相似文献   

20.
The molecular mechanism for packaging of the adenovirus (Ad) genome into the capsid is likely similar to that of DNA bacteriophages and herpesviruses-the insertion of viral DNA through a portal structure into a preformed prohead driven by an ATP-hydrolyzing molecular machine. It is speculated that the IVa2 protein of adenovirus is the ATPase providing the power stroke of the packaging machinery. Purified IVa2 binds ATP in vitro and, along with a second Ad protein, the L4 22-kilodalton protein (L4-22K), binds specifically to sequences in the Ad genome that are essential for packaging. The efficiency of binding of these proteins in vitro was correlated with the efficiency of packaging in vivo. By utilizing a virus unable to express IVa2, pm8002, it was reported that IVa2 plays a role in assembly of the empty virion. We wanted to address the question of whether the ATP binding, and hence the putative ATPase activity, of IVa2 was required for its role in virus assembly. Our results show that ATPase activity was not required for the assembly of empty virus particles. In addition, we present evidence that particles were assembled in the absence of IVa2 by using two viruses null for IVa2-a deletion mutant virus, ΔIVa2, and the previously described mutant virus, pm8002. Empty virus particles produced by these IVa2 mutant viruses did not contain detectable viral DNA. We conclude that the major role of IVa2 is in viral DNA packaging. A characterization of the empty particles obtained from the IVa2 mutant viruses compared to wild-type empty particles is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号