首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The powdery mildew resistance has been transferred from an Israeli wild emmer (Triticum dicoccoides) accession "G-305-M" into common wheat by crossing and backcrossing (G-305-M/781//Jing 411*3). Genetic analysis showed that the resistance was controlled by a single dominant gene at the seedling stage. Among the 102 pairs of SSR primers tested, four polymorphic microsatellite markers (Xpsp3029, Xpsp3071, Xpsp3152 and Xgwm570) from the long arm of chromosome 6A were mapped in a BC(2)F(3) population segregating for powdery mildew resistance and consisting of 167 plants. The genetic distances between the resistance gene and these four markers were: 0.6 cM to Xpsp3029, 3.1 cM to Xpsp3071, 11.2 cM to Xpsp3152 and 20.4 cM to Xgwm570, respectively. The order of these microsatellite loci agreed well with the established microsatellite map of chromosome arm 6AL. We concluded that the resistance gene was located on the long arm of chromosome 6AL. Based on the origin and chromosomal location of the gene, it is suggested that the resistance gene derived from "G-305-M" is a novel powdery mildew resistance gene and is temporarily designated MlG.  相似文献   

2.
Two dominant powdery mildew resistance genes introduced from Triticum carthlicum accession PS5 to common wheat were identified and tagged using microsatellite markers. The gene designated PmPS5A was placed on wheat chromosome 2AL and linked to the microsatellite marker Xgwm356 at a genetic distance of 10.2 cM. Based on the information of its origin, chromosome location, and reactions to 5 powdery mildew isolates, this gene could be a member of the complex Pm4 locus. The 2nd gene designated PmPS5B was located on wheat chromosome 2BL with 3 microsatellite markers mapping proximally to the gene: Xwmc317 at 1.1 cM; Xgwm111 at 2.2 cM; and Xgwm382 at 4.0 cM; and 1 marker, Xgwm526, mapping distally to the gene at a distance of 18.1 cM. Since this gene showed no linkage to the other 2 known powdery mildew resistance genes on wheat chromosome 2B, Pm6 and Pm26, we believe it is a novel powdery mildew resistance gene and propose to designate this gene as Pm33.  相似文献   

3.
Powdery mildew is one of the most destructive foliar diseases of wheat. A set of differential Blumeria graminis f.sp. tritici (Bgt) isolates was used to test the powdery mildew response of a Triticum monococcum-derived resistant hexaploid line, Tm27d2. Segregation analysis of 95 F2:3 lines from a Chinese Spring/Tm27d2 cross revealed that the resistance of Tm27d2 is controlled by a single dominant gene. Using monosomic analysis and a molecular mapping approach, the resistance gene was localized to the terminal end of chromosome 2AL. The linkage map of chromosome 2AL consisted of nine simple sequence repeat markers and one sequence-tagged site (STS) marker (ResPm4) indicative for the Pm4 locus. According to the differential reactions of 19 wheat cultivars/lines with known powdery mildew resistance genes to 13 Bgt isolates, Tm27d2 carried a new resistance specificity. The complete association of the resistance allele with STS marker ResPm4 indicated that it represented a new allele at the Pm4 locus. This new allele was designated Pm4d. The two flanking markers Xgwm526 and Xbarc122 closely linked to Pm4d at genetic distances of 3.4 and 1.0 cM, respectively, are present in chromosome bin 2AL1-0.85-1.00.  相似文献   

4.
Powdery mildew caused by Blumeria graminis f. sp. tritici is an important wheat disease in China and other parts of the world. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and thus an important resource for wheat improvement. Wild emmer accession IW2 collected from Mount Hermon, Israel, is highly resistant to powdery mildew at the seedling and adult plant stages. Genetic analysis using an F2 segregating population and F2:3 families, derived from a cross between susceptible durum cultivar Langdon and wild emmer accession IW2, indicated that a single dominant gene was responsible for the resistance of IW2. Bulked segregant and molecular marker analyses detected that six polymorphic SSR, one ISBP, and three EST-STS markers on chromosome 3BL bin 0.63–1.00 were linked to the resistance gene. Allelic variations of resistance-linked EST-STS marker BE489472 revealed that the allele was present only in wild emmer but absent in common wheat. Segregation distortion was observed for the powdery mildew resistance allele and its linked SSR markers with preferential transmission of Langdon alleles over IW2 alleles. The resistance gene was introgressed into common wheat by backcrossing and marker-assisted selection. Since no designated powdery mildew resistance gene has been found on chromosome 3BL, the resistance gene derived from wild emmer accession IW2 appears to be new one and was consequently designated Pm41. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Wheat powdery mildew is an economically important disease in cool and humid environments. Powdery mildew causes yield losses as high as 48% through a reduction in tiller survival, kernels per head, and kernel size. Race-specific host resistance is the most consistent, environmentally friendly and, economical method of control. The wheat (Triticum aestivum L.) germplasm line NC06BGTAG12 possesses genetic resistance to powdery mildew introgressed from the AAGG tetraploid genome Triticum timopheevii subsp. armeniacum. Phenotypic evaluation of F3 families derived from the cross NC06BGTAG12/‘Jagger’ and phenotypic evaluation of an F2 population from the cross NC06BGTAG12/‘Saluda’ indicated that resistance to the ‘Yuma’ isolate of powdery mildew was controlled by a single dominant gene in NC06BGTAG12. Bulk segregant analysis (BSA) revealed simple sequence repeat (SSR) markers specific for chromosome 7AL segregating with the resistance gene. The SSR markers Xwmc273 and Xwmc346 mapped 8.3 cM distal and 6.6 cM proximal, respectively, in NC06BGTAG12/Jagger. The multiallelic Pm1 locus maps to this region of chromosome 7AL. No susceptible phenotypes were observed in an evaluation of 967 F2 individuals in the cross NC06BGTAG12/‘Axminster’ (Pm1a) which indicated that the NC06BGTAG12 resistance gene was allelic or in close linkage with the Pm1 locus. A detached leaf test with ten differential powdery mildew isolates indicated the resistance in NC06BGTAG12 was different from all designated alleles at the Pm1 locus. Further linkage and allelism tests with five other temporarily designated genes in this very complex region will be required before giving a permanent designation to this gene. At this time the gene is given the temporary gene designation MlAG12.  相似文献   

6.
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.  相似文献   

7.
Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most important wheat diseases worldwide and breeding for resistance using diversified disease resistance genes is the most promising approach to prevent outbreaks of powdery mildew. A powdery mildew resistance gene, originating from wild emmer wheat (Triticum turgidum var. dicoccoides) accessions collected from Israel, has been transferred into the hexaploid wheat line 3D232 through crossing and backcrossing. Inoculation results with 21 B. graminis f. sp. tritici races indicated that 3D232 is resistant to all of the powdery mildew isolates tested. Genetic analyses of 3D232 using an F2 segregating population and F3 families indicated that a single dominant gene, Ml3D232, confers resistance in the host seedling stage. By applying molecular markers and bulked segregant analysis (BSA), we have identified polymorphic simple sequence repeats (SSR), expressed sequence tags (EST) and derived sequence tagged site (STS) markers to determine that the Ml3D232 is located on chromosome 5BL bin 0.59–0.76. Comparative genetic analyses using mapped EST markers and genome sequences of rice and Brachypodium established co-linearity of the Ml3D232 genomic region with a 1.4 Mb genomic region on Brachypodium distachyon chromosome 4, and a 1.2 Mb contig located on the Oryza sativa chromosome 9. Our comparative approach enabled us to develop new EST–STS markers and to delimit the genomic region carrying Ml3D232 to a 0.8 cM segment that is collinear with a 558 kb region on B. distachyon. Eight EST markers, including an NBS-LRR analog, co-segregated with Ml3D232 to provide a target site for fine genetic mapping, chromosome landing and map-based cloning of the powdery mildew resistance gene. This newly developed common wheat germplasm provides broad-spectrum resistance to powdery mildew and a valuable resource for wheat breeding programs.  相似文献   

8.
Powdery mildew is a major fungal disease in wheat growing areas worldwide. A novel source of resistance to wheat powdery mildew present in the germplasm line NC97BGTD7 was genetically characterized as a monogenic trait in greenhouse and field trials using F2 derived lines from a NC97BGTD7 X Saluda cross. Microsatellite markers were used to map and tag this resistance gene, now designated Pm34. Three co-dominant microsatellite markers linked to Pm34 were identified and their most likely order was established as: Xbarc177-5D, 5.4cM, Pm34, 2.6cM, Xbarc144-5D, 14cM, Xgwm272-5D. These microsatellite markers were previously mapped to the long arm of the 5D chromosome and their positions were confirmed using Chinese Spring nullitetrasomic Nulli5D-tetra5A and ditelosomic Dt5DL lines. Pm2, the only other known Pm gene on chromosome 5D, has been mapped to the short arm and its specificity is different from that of Pm34.  相似文献   

9.
Triticum monococcum accession TA2026 showed resistance to wheat powdery mildew. To identify the resistance gene and transfer it to common wheat, genetic analysis and molecular mapping were conducted using an F2 population and derived F3 families from the cross of TA2026 × M389. The results indicated that TA2026 possessed a recessive powdery mildew resistance gene. This gene was mapped to the terminal portion of chromosome 5AmL and flanked by SSR marker loci Xcfd39 and Xgwm126. Eight RFLP markers previously mapped to the terminal chromosome 5AmL were converted into STS markers. Three loci, detected by MAG1491, MAG1493 and MAG1494, the STS markers derived from RFLP probes CDO1312, PSR164 and PSR1201, respectively, were linked to this resistance gene with Xmag1493 only 0.9 cM apart from it. In addition, the STS marker MAG2170 developed from the tentative consensus wheat cDNA encoding the Mlo-like protein identified a locus co-segregating with Xmag1493. This is the first recessive powdery mildew resistance gene identified on chromosome 5Am, and is temporarily designated pm2026. We have successfully transferred it to a tetraploid background, and this resistance stock will now be used as the bridge parent for its transfer to common wheat.  相似文献   

10.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important wheat diseases worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the tetraploid ancestor (AABB) of domesticated bread and durum wheat, harbors many important alleles for resistance to various diseases, including powdery mildew. In the current study, two tetraploid wheat mapping populations, derived from a cross between durum wheat (cv. Langdon) and wild emmer wheat (accession G-305-3M), were used to identify and map a novel powdery mildew resistance gene. Wild emmer accession G-305-3M was resistant to all 47 Bgt isolates tested, from Israel and Switzerland. Segregation ratios of F2 progenies and F6 recombinant inbred line (RIL) mapping populations, in their reactions to inoculation with Bgt, revealed a Mendelian pattern (3:1 and 1:1, respectively), indicating the role of a single dominant gene derived from T. dicoccoides accession G-305-3M. This gene, temporarily designated PmG3M, was mapped on chromosome 6BL and physically assigned to chromosome deletion bin 6BL-0.70-1.00. The F2 mapping population was used to construct a genetic map of the PmG3M gene region consisted of six simple sequence repeats (SSR), 11 resistance gene analog (RGA), and two target region amplification polymorphism (TRAP) markers. A second map, constructed based on the F6 RIL population, using a set of skeleton SSR markers, confirmed the order of loci and distances obtained for the F2 population. The discovery and mapping of this novel powdery mildew resistance gene emphasize the importance of the wild emmer wheat gene pool as a source for crop improvement.  相似文献   

11.
一粒小麦抗白粉病和条锈病基因的分析   总被引:2,自引:0,他引:2  
一粒小麦是普通小麦抗性改良的宝贵资源.本研究对24份一粒小麦分别进行了白粉病和条锈病混合菌种苗期接种鉴定,进一步分别用一套白粉病菌菌株(15个)对2份乌拉尔图小麦和条锈病菌小种(21个)对1份栽培一粒小麦进行接种鉴定,其中乌拉尔图小麦UR206能抵抗所有供试白粉菌菌株,UR204除对白粉菌菌株E11感病外,对其余菌株表现抗性;栽培一粒小麦MO205对不同条锈菌小种表现出不同的抗性反应,研究表明乌拉尔图小麦UR206、UR204和栽培一粒小麦MO205分别含有与已知抗白粉病和抗条锈病基因不同的新基因.对乌拉尔图小麦UR204、UR206和栽培一粒小麦MO205分别进行抗白粉和条锈病基因的遗传分析,结果表明乌拉尔图小麦UR204和UR206分别含有一对显性抗白粉病基因,栽培一粒小麦MO205含有两对独立遗传的显性抗条锈病基因.  相似文献   

12.
The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5 isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F2-3 and recombinant inbreed line (F7) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT) and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted selection.  相似文献   

13.
一个来自硬粒小麦的抗白粉病基因的鉴定和微卫星标记   总被引:6,自引:0,他引:6  
在起源于硬粒小麦(TriticumdurumDesf.accessionDR147)和尾状山羊草(AegilopscaudataL.acc.Ae14)合成的双二倍体与普通小麦品种“莱州953”杂交组合衍生的BC3F2群体中鉴定了一个抗小麦白粉病基因。遗传分析表明,该基因为一个显性单基因。应用分离群体分组法(BSA),鉴定了两个与抗病基因紧密连锁的微卫星标记Xgwm311和Xgwm382,它们与抗病基因的遗传距离分别为5.9cM和4.9cM。对双二倍体亲本硬粒小麦DR147和尾状山羊草Ae14及轮回亲本“莱州953”的DNAPCR扩增结果表明,与抗病基因相关的微卫星标记Xgwm311和Xgwm382来源于硬粒小麦DR147。根据已发表的小麦微卫星图谱和对“中国春”缺-四体系DNA扩增结果,抗病基因被定位在小麦2A染色体的长臂末端。  相似文献   

14.
在起源于硬粒小麦(Triticum durum Desf.accession DR147)和尾状山羊草(Aegilops caudata L.acc.Ae14)合成的双二倍体与普通小麦品种"莱州953"杂交组合衍生的BC3F2群体中鉴定了一个抗小麦白粉病基因.遗传分析表明,该基因为一个显性单基因.应用分离群体分组法(BSA),鉴定了两个与抗病基因紧密连锁的微卫星标记Xgwm311和Xgwm382,它们与抗病基因的遗传距离分别为5.9 cM和4.9 cM.对双二倍体亲本硬粒小麦DR147和尾状山羊草Ae14及轮回亲本"莱州953"的DNA PCR扩增结果表明,与抗病基因相关的微卫星标记Xgwm311和Xgwm382来源于硬粒小麦DR147.根据已发表的小麦微卫星图谱和对"中国春"缺-四体系DNA扩增结果,抗病基因被定位在小麦2A染色体的长臂末端.  相似文献   

15.
Segregation analysis of resistance to powdery mildew in a F2 progeny from the cross Chinese Spring (CS) × TA2682c revealed the inheritance of a dominant and a recessive powdery mildew resistance gene. Selfing of susceptible F2 individuals allowed the establishment of a mapping population segregating exclusively for the recessive resistance gene. The extracted resistant derivative showing full resistance to each of 11 wheat powdery mildew isolates was designated RD30. Amplified fragment length polymorphism (AFLP) analysis of bulked segregants from F3s showing the homozygous susceptible and resistant phenotypes revealed an AFLP marker that was associated with the recessive resistance gene in repulsion phase. Following the assignment of this AFLP marker to wheat chromosome 7A by means of CS nullitetrasomics, an inspection of simple sequence repeat (SSR) loci evenly spaced along chromosome 7A showed that the recessive resistance gene maps to the distal region of chromosome 7AL. On the basis of its close linkage to the Pm1 locus, as inferred from connecting partial genetic maps of 7AL of populations CS × TA2682c and CS × Virest (Pm1e), and its unique disease response pattern, the recessive resistance gene in RD30 was considered to be novel and tentatively designated mlRD30.Communicated by C. Möllers  相似文献   

16.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

17.
The genetic diversity of common wheat hybrid lines Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum (2n = 42, F6–7) using chromosome-specific microsatellite (SSR) markers and C-banding of chromosomes was studied. Cluster analysis of data obtained by 42 SSR markers indicated that the hybrid lines can be broken into three groups according to their origin. There were two cases of complete genetic similarity between lines 1832-2/1841-6 and 208-3/213-1, which were obtained using common wheat as the parental plants. In cross combinations, when the stabilization of the nuclear genome of hexaploid lines occurred against a background of the cytoplasmic genome of tetraploid wheats, there was a high level of divergence between sister lines, in some cases exceeding 50%. The evaluation of the degree of susceptibility of the lines to powdery mildew, leaf and stem rust, and septoria leaf blotch was performed under different environmental conditions. It was shown that resistance to powdery mildew and leaf rust significantly depended on the region where assays were conducted. An evaluation of the field data showed that the lines 195-3, 196-1, and 221-1 with T. durum genetic material displayed complex resistance to fungal pathogens in Western Siberia and the Republic of Belarus. For lines 195-3 and 196-1, one shows a possible contribution of chromosomes 4B and 5B in the formation of complex resistance to diseases. Hybrid lines with complex resistance can be used to expand the genetic diversity of modern common wheat cultivars for genes of immunity.  相似文献   

18.
Powdery mildew, caused by Blumeria graminis f.sp. tritici (Bgt), is a destructive foliar disease of common wheat in areas with cool or maritime climates. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the progenitor of both domesticated tetraploid durum wheat and hexaploid bread wheat, harbors abundant genetic diversity related to resistance to powdery mildew that can be utilized for wheat improvement. An F2 segregating population was obtained from a cross between resistant bread wheat line 2L6 and susceptible cultivar Liaochun 10, after which genetic analysis of F2 and F2-derived F3 families was performed by inoculating plants with isolate Bgt E09. The results of this experiment demonstrated that powdery mildew resistance in 2L6, which was derived from wild emmer wheat accession IW30, was controlled by a single dominant gene, temporarily designated MLIW30. Nineteen SSR markers and two STS markers linked with MLIW30 were acquired by applying bulked segregant analysis. Finally, MLIW30 was located to the long arm of chromosome 4A and found to be flanked by simple sequence repeat markers XB1g2000.2 and XB1g2020.2 at 0.1 cM. Because no powdery mildew resistance gene in or derived from wild emmer wheat has been reported in wheat chromosome 4A, MLIW30 might be a novel Pm gene.  相似文献   

19.

Key message

A single recessive powdery mildew resistance gene Pm61 from wheat landrace Xuxusanyuehuang was mapped within a 0.46-cM genetic interval spanning a 1.3-Mb interval of the genomic region of chromosome arm 4AL.

Abstract

Epidemics of powdery mildew incited by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt) have caused significant yield reductions in many wheat (Triticum aestivum)-producing regions. Identification of powdery mildew resistance genes is required for sustainable improvement of wheat for disease resistance. Chinese wheat landrace Xuxusanyuehuang was resistant to several Bgt isolates at the seedling stage. Genetic analysis based on the inoculation of Bgt isolate E09 on the F1, F2, and F2:3 populations produced by crossing Xuxusanyuehuang to susceptible cultivar Mingxian 169 revealed that the resistance of Xuxusanyuehuang was controlled by a single recessive gene. Bulked segregant analysis and simple sequence repeat (SSR) mapping placed the gene on chromosome bin 4AL-4-0.80-1.00. Comparative genomics analysis was performed to detect the collinear genomic regions of Brachypodium distachyon, rice, sorghum, Aegilops tauschii, T. urartu, and T. turgidum ssp. dicoccoides. Based on the use of 454 contig sequences and the International Wheat Genome Sequence Consortium survey sequence of Chinese Spring wheat, four EST-SSR and seven SSR markers were linked to the gene. An F5 recombinant inbred line population derived from Xuxusanyuehuang?×?Mingxian 169 cross was used to develop the genetic linkage map. The gene was localized in a 0.46-cM genetic interval between Xgwm160 and Xicsx79 corresponding to 1.3-Mb interval of the genomic region in wheat genome. This is a new locus for powdery mildew resistance on chromosome arm 4AL and is designated Pm61.
  相似文献   

20.
Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (AbAb) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号