首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A capacitor microphone was used to measure the enthalpy and volume changes that accompany the electron transfer reactions, PQAhv P+Q?A and PQAQBhv P+QAQ?B, following flash excitation of photosynthetic reaction centers isolated from Rhodopseudomonas sphaeroides. P is a bacteriochlorophyll dimer (P-870), and QA and QB are ubiquinones. In reaction centers containing only QA, the enthalpy of P+Q?A is very close to that of the PQA ground state (ΔHr = 0.05 ± 0.03 eV). The free energy of about 0.65 eV that is captured in the photochemical reaction evidently takes the form of a substantial entropy decrease. In contrast, the formation of P+QAQ?B in reaction centers containing both quinones has a ΔHr of 0.32 ± 0.02 eV. The entropy change must be near zero in this case. In the presence of o-phenanthroline, which blocks electron transfer between Q?A and QB, ΔHr for forming P+Q?AQB is 0.13 ± 0.03 eV. The influence of flash-induced proton uptake on the results was investigated, and the ΔHr values given above were measured under conditions that minimized this influence. Although the reductions of QA and QB involve very different changes in enthalpy and entropy, both reactions are accompanied by a similar volume decrease of about 20 ml/mol. The contraction probably reflects electrostriction caused by the charges on P+ and Q?A or Q?B.  相似文献   

2.
V.A. Shuvalov 《BBA》1976,430(1):113-121
The dependence of the delayed luminescence of Photosystem I on the state of the reaction centers has been studied. Light flash induces a charge separation in the centers: P-700 · P-430 P-700+ · P-430?. Dark recombination of charges is accompanied by the recombination luminescence with τ12 ? 20 ms.If the centers are in the P-700 · P-430? state or if P-430 is inactivated by heat, then flashing of Photosystem I generates the triplet state chlorophyll with τ12 ? 0.5 ms. The triplet state has been measured by the delayed fluorescence of chlorophyll at 20 °C and 77 °K and by the chlorophyll phosphorescence at 77 °K. The delayed fluorescence at 20 °C arises from the thermal activation of the triplet state up to the excited singlet level of chlorophyll and at 77 °K it is due to triplet-triplet annihilation. The quantum yield of the triplet formation, estimated by a comparison of the light saturation curves of delayed fluorescence at 20 °C and of P-700 photooxidation under the same experimental (optical) conditions, is ≈ 0.9 of the P-700+ yield. Only one triplet of chlorophyll can be generated per P-700. Under heat inactivation of P-430 the triplet formation is not observed when P-700 is oxidized.It is assumed that the triplet-triplet annihilation at 77 °K is related with the strong interaction between the chlorophyll molecules in the pigment complex of Photosystem I. The possibility of a triplet participation in the primary processes of photosynthesis is discussed.  相似文献   

3.
A quantitative model for the damping of oscillations of the semiquinone absorption after successive light flashes is presented. It is based on the equilibrium between the states QA?QB and QAQB?. A fit of the model to the experimental results obtained for reaction centers from Rhodopseudomonas sphaeroides gave a value of α = [QA?QB]([QA?QB] + [QAQB?]) = 0.065 ± 0.005 (T = 21°C, pH 8).  相似文献   

4.
Flash-induced absorption changes of Triton-solubilized Photosystem I particles from spinach were studied under reducing and/or illumination conditions that serve to alter the state of bound electron acceptors. By monitoring the decay of P-700 following each of a train of flashes, we found that P-430 or components resembling it can hold 2 equivalents of electrons transferred upon successive illuminations. This requires the presence of a good electron donor, reduced phenazine methosulfate or neutral red, otherwise the back reaction of P-700+ with P-430 occurs in about 30 ms. If the two P-430 sites, designated Centers A and B, are first reduced by preilluminating flashes or chemically by dithionite under anaerobic conditions, then subsequent laser flashes generate a 250 μs back reaction of P-700+, which we associate with a more primary electron acceptor A2. In turn, when A2 is reduced by background (continuous) illumination in presence of neutral red and under strongly reducing conditions, laser flashes then produce a much faster (3 μs) back reaction at wavelengths characteristic of P-700. We associate this with another more primary electron acceptor, A1, which functions very close to P-700. The organization of these components probably corresponds to the sequence P-700-A1-A2-P-430[AB]. The relation of the optical components to acceptor species detected by EPR, by electron-spin polarization or in terms of peptide components of Photosystem I is discussed.Preliminary experiments with broken chloroplasts suggest that an analogous situation occurs there, as well.  相似文献   

5.
A method for calculating the rate constant (KA1A2) for the oxidation of the primary electron acceptor (A1) by the secondary one (A2) in the photosynthetic electron transport chain of purple bacteria is proposed.The method is based on the analysis of the dark recovery kinetics of reaction centre bacteriochlorophyll (P) following its oxidation by a short single laser pulse at a high oxidation-reduction potential of the medium. It is shown that in Ectothiorhodospira shaposhnikovii there is little difference in the value of KA1A2 obtained by this method from that measured by the method of Parson ((1969) Biochim. Biophys. Acta 189, 384–396), namely: (4.5±1.4) · 103s?1 and (6.9±1.2) · 103 s?1, respectively.The proposed method has also been used for the estimation of the KA1A2 value in chromatophores of Rhodospirillum rubrum deprived of constitutive electron donors which are capable of reducing P+ at a rate exceeding this for the transfer of electron from A1 to A2. The method of Parson cannot be used in this case. The value of KA1A2 has been found to be (2.7±0.8) · 103 s?1.The activation energies for the A1 to A2 electron transfer have also been determined. They are 12.4 kcal/mol and 9.9 kcal/mol for E. shaposhnikovii and R. rubrum, respectively.  相似文献   

6.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

7.
Using guanidinium and n-butylammonium cations (C+) as models for the positively charged side chains in arginine and lysine, we have determined the association constants with various oxyanions by potentiometric titration. For a dibasic acid, H2A, three association complexes may exist: K1M = [CHA][C+] [HA?]; K1D = [CA?][C+] [A2?]; K2D = [C2A][C+] [CA?]. For guanidinium ion and phosphate, K1M = 1.4, K1D = 2.6, and K2D = 5.1. The data for carboxylates indicate that the basicity of the oxyanion does not affect the association constant: acetate, pKa = 4.8, K1M = 0.37; formate, pKa = 3.8, K1M = 0.32; and chloroacetate, pKa = 2.9, K1M = 0.43, all with guanidinium ion. Association constants are also reported for carbonate, dimethylphosphinate, benzylphosphonate, and adenylate anions.  相似文献   

8.
R.L. Pan  S. Izawa 《BBA》1979,547(2):311-319
NH2OH-treated, non-water-splitting chloroplasts can oxidize H2O2 to O2 through Photosystem II at substantial rates (100–250 μequiv · h?1 · mg?1 chlorophyll with 5 mM H2O2) using 2,5-dimethyl-p-benzoquinone as an electron acceptor in the presence of the plastoquinone antagonist dibromothymoquinone. This H2O2 → Photosystem II → dimethylquinone reaction supports phosphorylation with a Pe2 ratio of 0.25–0.35 and proton uptake with H+e values of 0.67 (pH 8)–0.85 (pH 6). These are close to the Pe2 value of 0.3–0.38 and the H+e values of 0.7–0.93 found in parallel experiments for the H2O → Photosystem II → dimethylquinone reaction in untreated chloroplasts. Semi-quantitative data are also presented which show that the donor → Photosystem II → dibromothymoquinone (→O2) reaction can support phosphorylation when the donor used is a proton-releasing reductant (benzidine, catechol) but not when it is a non-proton carrier (I?, ferrocyanide).  相似文献   

9.
J.A. Van Best  L.N.M. Duysens 《BBA》1977,459(2):187-206
The kinetics of the luminescence of chlorophyll a in Chlorella vulgaris were studied in the time range from 0.2 μs to 20 μs after a short saturating flash (t12 = 25 ns) under various pretreatment including anaerobiosis, flashes, continuous illumination and various additions. A 1 μs luminescence component probably originating from System II was found of which the relative amplitude was maximum under anaerobic conditions for reaction centers in the state SPQ? before the flash, about one third for centers in the state S+PQ? or SPQ before the flash, and about one tenth for centers in the state S+PQ before the flash. S is the secondary donor complex with zero charge; S+ is the secondary donor complex with 1 to 3 positive charges; P, the primary donor, is the photoactive chlorophyll a, P-680, of reaction center 2; Q? is the reduced acceptor of System II, Q. Under aerobic conditions, where an endogenous quencher presumably was active, the luminescence was reduced by a factor two.The 1 μs decay of the luminescence is probably caused by the disappearance of P+ formed in the laser flash according to the reaction ZP+ → Z+P in which Z is the molecule which donates an electron to P+ and which is part of S. After addition of hydroxylamine, the 1 μs luminescence component changed with the incubation time exponentially (τ = 27 s) into a 30 μs component; during the same time, the variable fluorescence yield, measured 9 μs after the laser flash, decreased by a factor 2 with the same time constant. Hereafter in a second much slower phase the fluorescence yield decreased as an exponential function of the incubation time to about the dark value; meanwhile the 30 μs luminescence increased about 50% with the same time constant (τ = 7 min). Heat treatment abolished both luminescence components.The 1 μs luminescence component saturated at about the same energy as the System II fluorescence yield 60 μs after the laser flash and as the slower luminescence components. From the observation that the amplitude is maximum if the laser flash is given when the fluorescence yield is high after prolonged anaerobic conditions (state SQ?), we conclude that the 1 μs luminescence is probably caused by the reaction
PWQ?+hv → P1WQ?P+W?Q?P1WQ? → PWQ?+hv
in which W is an acceptor different from Q. The presence of S+ reduced the luminescence amplitude to about one third. Two models are discussed, one with W as an intermediate between P and Q and another, which gives the best interpretation, with W on a side path.  相似文献   

10.
The rates of electron exchange between ferricytochrome c (CIII)3 and ferrocytochrome c (CII) were observed as a function of the concentrations of ferrihexacyanide (FeIII) and ferrohexacyanide (FeII) by monitoring the line widths of several proton resonances of the protein. Addition of FeII to CIII homogeneously increased the line widths of the two downfield paramagnetically shifted heme methyl proton resonances to a maximal value. This was interpreted as indicating the formation of a stoichiometric complex, CIII·FeII, in the over-all reaction:
CIII+FeII?k?1k1CIII·FeII?k?2k2CII·FeIII?k?3k3CIII+FeII
Values for k1k?1 = 0.4 × 103m?1and k2 = 208 s?1, respectively, were calculated from the maximal change in line width observed at pH 7.0 and 25 °C. Changes in the line width of CIII in the presence of FeII and either KCl or FeIII suggest that complexation is principally ionic, that FeIII and FeII compete for a common site. Addition of saturating concentrations of FeIII to CIII produced only minor changes in the nuclear magnetic resonance spectrum of CIII suggesting that complexation occurs on the protein surface.Addition of FeIII to CII in the presence of excess FeII (to retain most of the protein as CII) increased the line width of the methyl protons of ligated methionine 80. A value for k?2 ≈ 2.08 × 104 s?1 was calculated from the dependence of linewidth on the concentration of FeII at 24 °C. These rates are shown to be consistent with the over-all rates of reduction and oxidation previously determined by stopped flow measurements, indicating that k2 and k?2 were rate limiting. From the temperature dependence the enthalpies of activation are 7.9 and 15.2 kcal/mol for k2 and k?2, respectively.  相似文献   

11.
A thermodynamic characterization of the Na+-H+ exchange system in Halobacterium halobium was carried out by evaluating the relevant phenomenological parameters derived from potential-jump measurements. The experiments were performed with sub-bacterial particles devoid of the purple membrane, in 1 M NaCl, 2 M KCl, and at pH 6.5–7.0. Jumps in either pH or pNa were brought about in the external medium, at zero electric potential difference across the membrane, and the resulting relaxation kinetics of protons and sodium flows were measured. It was found that the relaxation kinetics of the proton flow caused by a pH-jump follow a single exponential decay, and that the relaxation kinetics of both the proton and the sodium flows caused by a pNa-jump also follow single exponential decay patterns. In addition, it was found that the decay constants for the proton flow caused by a pH-jump and a pNa-jump have the same numerical value. The physical meaning of the decay constants has been elucidated in terms of the phenomenological coefficients (mobilities) and the buffering capacities of the system. The phenomenological coefficients for the Na+-H+ flows were determined as differential quantities. The value obtained for the total proton permeability through the particle membrane via all available channels, LH = (?JH +pH)Δψ,ΔpNa, was in the range of 850–1150 nmol H+·(mg protein)?1·h?1·(pH unit)?1 for four different preparations; for the total Na+ permeability, LNa = (?JNa+pNa)Δψ,ΔpH, it was 1620–2500 nmol Na+·(mg protein)?1·h?1·(pNa unit)?1; and for the proton ‘cross-permeability’, LHNa = (?JH+pNa)Δψ,ΔpH, it was 220–580 nmol H+·(mg protein)?1·h?1·(pNa unit)?1, for different preparations. From the above phenomenological parameters, the following quantities have been calculated: the degree of coupling (q), the maximal efficiency of Na+-H+ exchange (ηmax), the flow and force efficacies (?) of the above exchange, and the admissible range for the values of the molecular stoichiometry parameter (r). We found q ? 0.4; ηmax ? 5%; 0.36 ? r ? 2; ?JNa+ ? 1.3 · 105μmol · (RT unit)?1 at JNa = 1 μmolNa+ · (mgprotein)?1 · h?1; and ?ΔpNa ? 5 · 104 ΔpNa · (mg protein) · h · (RT unit)?1 at ΔpNa = 1 unit, for different preparations.  相似文献   

12.
(1) A quantitative study has been made of the binding of ouabain to the (Na+ + K+)-ATPase in homogenates prepared from brain tissue of the hawk moth, Manduca sexta. The results have been compared to those obtained in bovine brain microsomes. (2) The insect brain (Na+ + K+)-ATPase will bind ouabain either in the presence of Mg2+ and Pi, (‘Mg2+, Pi’ conditions) or in the presence of Na+, Mg2+, and an adenine nucleotide (‘nucleotide’ conditions) as is the case for the bovine brain (Na+ + K+)-ATPase. The binding conditions did not alter the total number of receptor sites measured at high ouabain concentrations in either tissue. (3) Potassium ion decreases the affinity (increases the KD) of ouabain to the M. sexta brain (Na+ + K+)-ATPase under both binding conditions. However, ouabain binding is more sensitive to K+ inhibition under the nucleotide conditions. In bovine brain ouabain binding is equally sensitive to K+ inhibition under the both conditions. (4) The enzyme-ouabain complex has a rate of dissociation that is 10-fold faster in the M. sexta preparation than in the bovine brain preparation. Because of this, the M. sexta (Na+ + K+)-ATPase has a higher KD for ouabain binding and is less sensitive to inhibition by ouabain than the bovine brain enzyme. (5) This data supports the hypothesis that two different conformational states of the M. sexta (Na+ + K+)-ATPase can bind ouabain.  相似文献   

13.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

14.
Using the adsorption theory of chemical kinetics, a new equation concerning the growth of single populations is presented:
dXdt =μcX(1 ?)XXm1?XXm
or in its integral form:
lnXXo?lnXm?XXm?Xo+XmXmXm?XXm?Xoc(t?to)
This equation attempts to explain the relationship between population increment and limiting resources. It can be reduced to either the logistic or exponential equation under two extreme conditions. The new equation has three parameters, Xm, Xm and μc, each of which has ecological significance. XmX′m concerns the efficiency of nutrient utilization by an organism. Its value is between zero and one. With ratios approaching unity, the efficiency is high; lower ratios indicate that population increment is quickly restricted by limiting resources. μc, is a velocity parameter lying between μe, (exponential growth) and μL (logistic growth), and is dependent on the value of solXmX′m. From μc we can predict the time course of population incremental velocity (dXdt), and can observe that it is not symmetrical, unlike that derived from the logistic equation. At XmX′m = 1 the maximum velocity of the population increment predicted from the new equation is twice that of the logistic equation.Population growth in nature seems to support the new equation rather than the logistic equation, and it can be successfully fitted by means of a least square method.  相似文献   

15.
16.
J.A. Van Best  P. Mathis 《BBA》1978,503(1):178-188
Absorption changes (ΔA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures.In the microsecond time range the difference spectrum of ΔA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+?700; it decays in a polyphasic manner with half-times of 17 μs, 210 μs and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 μs. After treatment with 3–10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t12 = 20–40 μs, and a minor phase with t12 ? 200 μs), probably by reduction by an accessory electron donor.In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25–45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.  相似文献   

17.
The interaction of |CnH2n+1N+(CH3)3| · I? (n = 3, 6, 9, 12, 14, 16 or 18) with egg-yolk phosphatidylcholine-water dispersions has been studied by 31P-NMR spectroscopy. It is shown that the effective anisotropy of 31P chemical shift (?Δσeff) of the lamellar phospholipid liquid-crystalline phase Lα increases with increasing concentration and alkyl chain length of the drug. Addition of |C6H13N+(CH3)3| ·I ? or |C9H19N+(CH3)3I? to the phospholipid-water dispersion at a molar ratio ammonium salt:phospholipid > 0.8 induces in the dispersion a structure with an effective isotropic phospholipid motion. This structure is unstable and slowly transforms into the hexagonal phase. These effects have not been observed in phospholipid-water dispersions mixed with the ammonium derivatives with the longer alkyl chains n  12, 14, 16 or 18. It is proposed that these results might explain the effects of the investigated drugs on the nerve, muscle and bacterial cells.  相似文献   

18.
Sally Reinman  Paul Mathis 《BBA》1981,635(2):249-258
The influence of temperature on the rate of reduction of P-680+, the primary donor of Photosystem II, has been studied in the range 5–294 K, in chloroplasts and subchloroplasts particles. P-680 was oxidized by a short laser flash. Its oxidation state was followed by the absorption level at 820 nm, and its reduction attributed to two mechanisms: electron donation from electron donor D1 and electron return from the primary plastoquinone (back-reaction).Between 294 and approx. 200 K, the rate of the back-reaction, on a logarithmic scale, is a linear function of the reciprocal of the absolute temperature, corresponding to an activation energy between 3.3 and 3.7 kcal · mol?1, in all of the materials examined (chloroplasts treated at low pH or with Tris; particles prepared with digitonin). Between approx. 200 K and 5 K the rate of the back-reaction is temperature independent, with t12 = 1.6 ms. In untreated chloroplasts we measured a t12 of 1.7 ms for the back-reaction at 77 and 5 K.The rate of electron donation from the donor D1 has been measured in darkadapted Tris-treated chloroplasts, in the range 294–260 K. This rate is strongly affected by temperature. An activation energy of 11 kcal · mol?1 was determined for this reaction.In subchloroplast particles prepared with Triton X-100 the signals due to P-680 were contaminated by absorption changes due to the triplet state of chlorophyll a. This triplet state has been examined with pure chlorophyll a in Triton X-100. An Arrhenius plot of its rate of decay shows a temperature-dependent region (292–220 K) with an activation energy of 9 kcal · mol?1, and a temperature-independent region (below 200 K) with t12 = 1.1 ms.  相似文献   

19.
20.
ADP and Pi-loaded membrane vesicles from l-malate-grown Bacillus alcalophilus synthesized ATP upon energization with ascorbateN,N,N′,N′-tetramethyl-p-phenylenediamine. ATP synthesis occurred over a range of external pH from 6.0 to 11.0, under conditions in which the total protonmotive force Δ\?gmH+ was as low as ?30 mV. The phosphate potentials (ΔGp) were calculated to be 11 and 12 kcal/mol at pH 10.5 and 9.0, respectively, whereas the Δ\?gmH+ values in vesicles at these two pH values were quite different (?40 ± 20 mV at pH 10.5 and ?125 ± 20 mV at pH 9.0). ATP synthesis was inhibited by KCN, gramicidin, and by N,N′-dicyclohexylcarbodiimide. Inward translocation of protons, concomitant with ATP synthesis, was demonstrated using direct pH monitoring and fluorescence methods. No dependence upon the presence of Na+ or K+ was found. Thus, ATP synthesis in B. alcalophilus appears to involve a proton-translocating ATPase which functions at low Δ\?gmH+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号