首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
Switchgrass (Panicum virgatum L.) is a candidate for cellulosic bioenergy feedstock development. Because biomass yield is the most important biological factor limiting the commercial development and deployment of switchgrass as a cellulosic bioenergy feedstock efforts must be undertaken to develop improved cultivars. The objectives of this study were (1) to conduct two cycles of within-family selection for increased biomass yield in WS4U switchgrass and (2) to simultaneously evaluate progress from selection relative to the mean of the original WS4U population. Each of the 150 WS4U families was subjected to phenotypic selection for vigor, seed production, and disease resistance. The mean of all families increased relative to the original WS4U population by 0.36 Mg ha?1 cycle?1 for biomass yield and 3.0% cycle?1 for ground cover. Gains were uniform across two diverse evaluation locations, indicating that selection gains were robust relative to some variation in Hardiness Zone and soil type. Two cycles of within-family selection led to a homogenization of the diverse families, creating novel recombinations and reducing the family genetic variance to near zero. It is hypothesized that selection and recombination has led to replication of favorable alleles across pedigrees with differing genetic backgrounds, increasing the likelihood of including these favorable alleles in the progeny of future selections. The rate of genetic progress is expected to increase in future cycles of selection with a combination of within-family phenotypic selection and half-sib progeny testing of selected families.  相似文献   

2.
Development of switchgrass (Panicum virgatum L.) as a dedicated biomass crop for conversion to energy requires substantial increases in biomass yield. Most efforts to breed for increased biomass yield are based on some form of indirect selection. The objective of this paper is to evaluate and compare the expected efficiency of several indirect measures of breeding value for improving sward-plot biomass yield of switchgrass. Sward-plot biomass yield, row-plot biomass, and spaced-plant biomass were measured on 144 half-sib families or their maternal parents from the WS4U-C2 breeding population of upland switchgrass. Heading date was also scored on row plots and anthesis date was scored on spaced plants. Use of any of these indirect selection criteria was expected to be less efficient than direct selection for biomass yield measured on sward plots, when expressed as genetic gain per year. Combining any of these indirect selection criteria with half-sib family selection for biomass yield resulted in increases in efficiency of 14 to 36%, but this could only be achieved at a very large cost of measuring phenotype on literally thousands of plants that would eventually have no chance of being selected because they were derived from inferior families. Genomic prediction methods offered the best solution to increase breeding efficiency by reducing average cycle time, increasing selection intensity, and placing selection pressure on all additive genetic variance within the population. Use of genomic selection methods is expected to double or triple genetic gains over field-based half-sib family selection.  相似文献   

3.
Summary Progeny testing and selection of forage grasses by means of growing half-sib (HS) families from openpollination and polycross have been considered from theoretical and practical points of view. Special attention has been paid to the genetic variation within half-sib families, which is expected to be large as compared to the genetic variation between families. Based on observations of individual plants within plots, the environmental component of the variation is expected to be large and nonestimatable. The results of an experiment in meadow fescue (Festuca pratensis Huds.) are presented. In this experiment, randomly selected individual plants within HS families were cloned and laid out in randomized blocks. For the characters observed (earliness and raw matter yield) no significant variance component for dominance was found. The highly significant additive component estimated for earliness, as well as for yield, after each of three cuts and in total were about three times as large within as between families, as expected from the theoretical considerations. The estimated response to selection was much higher for a combination of between- and within-family selection as compared to free clone or family mean selection alone. It is suggested that a program for progeny testing and selection in a base population of perennial forage grasses should start with an experiment in which a large number of randomly selected parental clones and a fixed number of clones from each of the half-sib families derived from the mother genotypes are grown simultaneously. The selected clones within superior families could later on be further cloned, placed in a polycross field, and the new HS-families could be sown in ordinary field trials at various locations for further selection.  相似文献   

4.
Theoretically, in a recurrent selection program, the use of doubled haploids (DH) can increase genetic advance per unit of time. To evaluate the efficiency expected from the use of DH for the improvement of grain yield in a maize (Zea mays L.) population, two recurrent selection programs for testcross performance were initiated using testcross progenies from DH lines and S1 families. In 4 years one selection cycle using DH and two selection cycles using S1 families were carried out with the same selection intensity for both methods. As expected, testcross genetic variance was twice as high among DH lines as among S1 families. The predicted genetic gain was 8.2% for the DH selection cycle, and 10.6% for the two S1 selection cycles, giving a per year advantage of 29% for the S1 family method over the DH method with a cycle of 4 years. With a 3-year cycle for the DH method, both methods were expected to be equivalent. Using a tester related to the one used for selection, the genetic gains obtained were equivalent for both methods: 6.6% for the DH cycle and 7.0% for the two S1 cycles. With a 3-year cycle for the DH method, the advantage would have been in favor of DH method. Furthermore, the DH method has the advantage of simultaneously producing lines that are directly usable as parents of a hybrid. Thus, if the genetic advance per unit of time is evaluated at the level of developed varieties even with the same or with a lower genetic advance in population improvement, the DH method appears to be the most efficient.  相似文献   

5.
Selection responses in natural plant populations depend on how the phenotypic variation of traits is composed. The contributions of nuclear genetic, maternal, paternal, environmental and inbreeding effects to variation in time to germination, germination percentage, and seed- and seedling size were studied in a population of Lychnis flos-cuculi. It was found that: (1) Maternal effects predominated in the determination of progeny seed size and germination characteristics; (2) Maternal environment during seed development was less important than maternal genotype; (3) Small but significant variation within maternal families could be observed among individuals sired by different fathers; (4) Additive genetic variance was significant for seedling size 4 weeks after germination. In conclusion, selection shortly after emergence will mainly favour particular maternal genotypes, while selection later in the life cycle may act upon zygotic genotypes. Inbreeding depression was significant, especially for vegetative growth. Consistent differences were found among maternal genotypes in the degree of variation in the time to germination, suggesting that selection could operate to favour polymorphic or uniform germination behaviour.  相似文献   

6.
1. The performance of gall-forming aphids is largely dependent on the timing of egg hatch relative to host budburst. This study examined the mode of natural selection acting on egg-hatching time and the extent of its genetic variance in a Tetraneura aphid.
2. The budburst time of the primary host of the aphid varied greatly among individual trees. Egg hatch on a host tree was often asynchronous with host budburst.
3. Transplant experiments indicated that egg-hatching time was subject to heterogeneous selective pressures in heterogeneous host environments.
4. Hatching time was compared between half-sib families. Small nymphs in a half-sib family tended to hatch later, and this resulted in large within-family variance in hatching time.
5. Small nymphs that hatched late were likely to be selected out during the galling process. Thus, these nymphs may be produced not as bet-hedging but due to maternal effects. When such maladapted nymphs were not included in analysis, a significant amount of additive genetic variance was detected in hatching time.
6. Heterogeneous selection, coupled with density-dependent regulation of population on respective host trees, probably maintains additive genetic variance in this trait.  相似文献   

7.
The nature of the genetic variation for the activity of three enzymes (α-GPD, ME, and SOD) was studied by means of analyses of variance among full-sib and half-sib families. The results presented here indicate that the genetic variation of activity of these enzymes consist primarily of non-additive genetic variance. A moderate level of additive genetic variation was found only for α-GPD activity. We also examined the question whether an association exists between enzyme activities and selection for preadult developmental time. Using the method developed by Lande and Arnold (1983), significant directional selection was observed for α-GPD activity.  相似文献   

8.
The life cycles of mosses and other bryophytes are unique among land plants in that the haploid gametophyte stage is free-living and the diploid sporophyte stage is ephemeral and completes its development attached to the maternal gametophyte. Despite predictions that populations of haploids might contain low levels of genetic variation, moss populations are characterized by substantial variation at isozyme loci. The extent to which this is indicative of ecologically important life history variation is, however, largely unknown. Gametophyte plants from two populations of the moss Ceratodon purpureus were grown from single-spore isolates in order to assess variation in growth rates, biomass accumulation, and reproductive output. The data were analyzed using a nested analysis of variance, with haploid sib families (gametophytes derived from the same sporophyte) nested within populations. High levels of life history variation were observed within both populations, and the populations differed significantly in both growth and reproductive characteristics. Overall gametophytic sex ratios did not depart significantly from 1:1 within either population, but there was significant variation among families in both populations for progeny sex ratio. Some families produced predominantly male gametophytes, while others yielded predominantly females. Because C. purpureus has a chromosomal mechanism of sex determination, these observations suggest differential (but unpredictable) germination of male and female spores. Life history observations showed that male and female gametophytes are dimorphic in size, maturation rates, and reproductive output.  相似文献   

9.
Understanding how genetic variation shapes species' distributions involves examining how variation is distributed across a species' range as well as how it responds to underlying environmental heterogeneity. We examined patterns of fitness variation across the local distribution of an annual composite (Lasthenia fremontii) spanning a small-scale inundation gradient in a California vernal pool wetland. Using seeds collected from the center and edge of a population, paternal half-sib families were generated and transplanted back to the center and edge of the original population. All transplants were adapted to the conditions at the center of the population. The effect of the environment on the opportunity for selection depended on the model of selection assumed. Under a model of hard selection, variance in absolute fitness was lower among transplants at the edge of the population than at the center. Under a model of soft selection, the variance in relative fitness was similar between center and edge microhabitats. Given that this population is likely well-mixed, differences in habitat quality between center and edge microhabitats will likely cause selection at the center of the population to dominate the evolutionary trajectory of this population.  相似文献   

10.
Moorad JA  Wade MJ 《Genetics》2005,170(3):1373-1384
Inbreeding depression is expected to play an important but complicated role in evolution. If we are to understand the evolution of inbreeding depression (i.e., purging), we need quantitative genetic interpretations of its variation. We introduce an experimental design in which sires are mated to multiple dams, some of which are unrelated to the sire but others are genetically related owing to an arbitrary number of prior generations of selfing or sib-mating. In this way we introduce the concept of "inbreeding depression effect variance," a parameter more relevant to selection and the purging of inbreeding depression than previous measures. We develop an approach for interpreting the genetic basis of the variation in inbreeding depression by: (1) predicting the variation in inbreeding depression given arbitrary initial genetic variance and (2) estimating genetic variance components given half-sib covariances estimated by our experimental design. As quantitative predictions of selection depend upon understanding genetic variation, our approach reveals the important difference between how inbreeding depression is measured experimentally and how it is viewed by selection.  相似文献   

11.
A. Gallais 《Genetics》1990,124(1):199-206
The line value of a genotype is defined as the expected value of all lines that can be derived from this genotype. Specific genetic effects are defined for this value: only additive and additive by additive epistatic effects are necessary. There is no dominance effect for such a value. A general expression for the covariances between related lines is given. From a design with several lines per haplodiploidized plant taken at random from a population it is possible to estimate the additive variance for line value and the variance of additive by additive epistasis for line value. Variances of higher order epistasis can be estimated with a two-factor mating design in which a cross is replaced by the population of lines that can be derived from it. With a diallel or a factorial design a direct test for the presence of homozygous by homozygous epistasis is possible. The application of the concept of line value to the theory of line development leads to simple expressions of genetic advance in one cycle of recurrent selection according to the testing system. A brief consideration of these expressions leads to the conclusion that single doubled haploid descent recurrent selection will be one of the most efficient methods for low heritabilities and with a rapid development of doubled haploid lines.  相似文献   

12.
Tolerance is the ability of plants to maintain fitness after experiencing herbivore damage. We investigated scarlet gilia tolerance to browsing in the framework of phenotypic plasticity using both an operational and candidate trait approach. Individuals from full-sib families were split into an artificial clipping treatment, a natural-damage treatment, or left as controls. We tested for genetic variation in tolerance by evaluating family x herbivory treatment interactions on fitness in a mixed model analysis of variance. In addition, we used selection analyses to assess the function of flowering phenology and compensatory regrowth (via branch production) as candidate tolerance traits. We found a strong detrimental fitness effect of browsing and considerable variation among sire half-sib families in levels of tolerance (25% to 63% of the fitness of controls). There was no evidence of overcompensation at either the population or family level and no additive genetic variation in operationally defined tolerance. Phenotypic selection analyses provide evidence that early flowering and compensatory regrowth function as tolerance characters. We found strong linear and correlational selection for early flowering and increased branch production for damaged plants and linear selection for apical dominance (reduced branchiness) and early flowering in control plants. Moreover, reduced phenological delay and increased plasticity in branch production were correlated with tolerance. We detected significant additive genetic variation in flowering phenology in both treatments and a positive genetic correlation between the phenology of control and damaged plants. We found significant additive genetic variation in branch production in undamaged and naturally damaged plants, but not in clipped plants. Damaged plants exhibited marginally significant additive genetic variance in fitness, although its heritability was very low (approximately 3.6%). We failed to find additive genetic variation in the fitness of control plants. Our results suggest that tolerance traits are under herbivore-imposed natural selection in this population, but that responses to selection are limited by available genetic variation and selective constraints.  相似文献   

13.
We developed MBP (version 1.0), a software package for optimizing maize (Zea mays L.) breeding procedures based on doubled haploid lines. This software accounts for both recurrent selection and the development of hybrid parent lines. Based on quantitative genetic model calculations, MBP (version 1.0) maximizes the expected genetic gain per year as a function of various genetic parameters and operational variables under the restriction of a given annual breeding budget. Exact formulae for the prediction of the effective population size are implemented, which allows to optimize breeding procedures under limited relative annual loss of genetic variance.  相似文献   

14.
Epistatic genetic variance for quantitative traits may play an important role in evolution, but detecting epistasis in diploid organisms is difficult and requires complex breeding programs and very large sample sizes. We develop a model for detecting epistasis in organisms with a free-living haploid stage in their life cycles. We show that epistasis is indicated by greater variance among families of haploid progeny derived from individual diploids than among clonally replicated haploid sibs from the same sporophyte. Simulations show that the power to detect epistasis is linearly related to the number of sporophytes and the number of haploids per sporophyte in the dataset. We illustrate the model with data from growth variation among gametophytes of the moss, Ceratodon purpureus. The experiment failed to detect epistatic variance for biomass production, although there was evidence of additive variance.  相似文献   

15.
Evolution of size and growth depends on heritable variation arising from additive and maternal genetic effects. Levels of heritable (and nonheritable) variation might change over ontogeny, increasing through "variance compounding" or decreasing through "compensatory growth." We test for these processes using a meta-analysis of age-specific weight traits in domestic ungulates. Generally, mean standardized variance components decrease with age, consistent with compensatory growth. Phenotypic convergence among adult sheep occurs through decreasing environmental and maternal genetic variation. Maternal variation similarly declines in cattle. Maternal genetic effects are thus reduced with age (both in absolute and relative terms). Significant trends in heritability (decreasing in cattle, increasing in sheep) result from declining maternal and environmental components rather than from changing additive variation. There was no evidence for increasing standardized variance components. Any compounding must therefore be masked by more important compensatory processes. While extrapolation of these patterns to processes in natural population is difficult, our results highlight the inadequacy of assuming constancy in genetic parameters over ontogeny. Negative covariance between direct and maternal genetic effects was common. Negative correlations with additive and maternal genetic variances indicate that antagonistic pleiotropy (between additive and maternal genetic effects) may maintain genetic variance and limit responses to selection.  相似文献   

16.
Four cycles of S(1) family recurrent selection to improve grain yield and resistance to Striga hermonthica have been completed in TZE-Y Pop STR C(0.) In order to determine whether or not to continue with the recurrent scheme, it was desirable to evaluate the amount of residual genetic variance and associated parameters in the population. The objective of this study was to characterize the relative changes in the levels of the genetic variances, heritability estimates and genetic correlation coefficients, and to predict future gains from selection for grain yield, Striga resistance and other agronomic traits. Fifty S(1) families, derived from each cycle, were evaluated under Striga-infested and Striga-free conditions at Mokwa, Ikenne and Abuja, Nigeria, in 2005 and 2007. Under Striga infestation, genetic variances for grain yield, days to anthesis, plant height and Striga damage generally increased in the advanced cycles of selection. In contrast, the genetic variances for days to silk, anthesis-silking interval, ears per plant, ear aspect and number of emerged Striga plants decreased with selection. The advanced cycles of selection significantly out-yielded the original cycle in both research environments. Heritabilities for grain yield, Striga damage and number of emerged Striga plants were significantly greater than zero. The realized gains from selection for grain yield under Striga infestation (52?kg?ha(-1)?cycle(-1)) and Striga-free conditions (130?kg?ha(-1)?cycle(-1)) were remarkably lower than the predicted gains (350 and 250?kg?ha(-1?)cycle(-1), respectively). Adequate genetic variability exists in cycle 4 of the scheme to ensure future gains from selection.  相似文献   

17.
The possibility that sexual selection operates in angiosperms to effect evolutionary change in polygenic traits affecting male reproductive success requires that there is additive genetic variance for these traits. I applied a half-sib breeding design to individuals of the annual, hermaphroditic angiosperm, wild radish (Raphanus raphanistrum: Brassicaceae), to estimate paternal genetic effects on, or, when possible, the narrow-sense heritability of several quantitative traits influencing male reproductive success. In spite of significant differences among pollen donors with respect to in vitro pollen tube growth rates, I detected no significant additive genetic variance in male performance with respect to the proportion of ovules fertilized, early ovule growth, the number of seeds per fruit, or mean individual seed weight per fruit. In all cases, differences among maternal plants in these traits far exceeded differences among pollen donors. Abortion rates of pollinated flowers and fertilized ovules also differed more among individuals as maternal plants than as pollen donors, suggesting strong maternal control over these processes. Significant maternal phenotypic effects in the absence of paternal genetic or phenotypic effects on reproductive traits may be due to maternal environmental effects, to non-nuclear or non-additive maternal genetic effects, or to additive genetic variance in maternal control over offspring development, independent of offspring genotype. While I could not distinguish among these alternatives, it is clear that, in wild radish, the opportunity for natural or sexual selection to effect change in seed weight or seed number per fruit appears to be greater through differences in female performance than through differences in male performance.  相似文献   

18.
 Three cycles of S1 recurrent selection for yield were carried out in two synthetic maize populations, EPS6 from humid Spain and EPS7 from arid Spain. One-hundred S1 lines were evaluated from each cycle of selection and the ten highest-yielding S1 lines were recombined to produce the next cycle. Changes in variability and genetic distances in two synthetic maize populations, following three cycles of recurrent selection, recombining ten S1 lines in each cycle, were determined. Isozyme analysis was performed on 125 seedlings per cycle of selection (four cycles in each of two populations). Regressions of each allozyme frequency on cycles of selection were performed, genetic distances between populations were determined, and simple correlations between genetic distances and heterosis were calculated. The average heterozygosity per locus was also calculated for each population. Regression analysis did not reveal any common trend between EPS6 and EPS7 for changes in allele frequencies presumably due to selection. The number of polymorphic loci, the mean alleles per locus, and the mean heterozygosity did not show any reduction in variability. Finally, selection did not affect genetic distances among cycles of selection. The agronomic evaluation of the selection program, after three cycles of selection, revealed that the genetic variance was not significantly reduced for most traits, and that the heterosis among cycles of selection of both populations had not changed significantly. The conclusions based on isozyme data supported the deductions made from agronomic data. Three cycles of selection neither caused relevant changes on variability nor on genetic distance among cycles of selection of both maize synthetic populations. These data did not indicate any basis for increasing the number of S1 lines recombined for recurrent selection. Received: 28 April 1997 / Accepted: 23 June 1997  相似文献   

19.
Summary Because seed size is often associated with survival and reproduction in plant populations, genetic variation for seed size may be reduced or eliminated by natural selection. To test this hypothesis we assessed genetic sources of variation in seed size in a population ofPhlox drummondii to determine whether genetic differences among seeds influence the size they attain. A diallel cross among 12 plants from a population at Bastrop, Texas, USA allowed us to partition variance in the mass of seeds among several genetic and parental effects. We found no evidence of additive genetic variance or dominance genetic variance for seed mass in the contribution of plants to their offspring. Extranuclear maternal effects accounted for 56% of the variance in seed mass. A small interaction was observed between seed genotype and maternal plant. Results of this study support theory that predicts little genetic variation for traits associated with fitness.  相似文献   

20.
Summary Full and half-sib reciprocal recurrent selection (RRS) were compared algebraically and with computer simulation. The relative performance of the two schemes depended on the selection intensity and the environmental variance. Full-sib RRS was favoured at less intense selection and when the environmental variance was large relative to the total genetic variation. As selection intensity increased its advantage declined. Full-sib RRS enables a breeder to combine the efficient development of new hybrids with population improvement and should be a valuable technique in plant breeding.Published with the approval of the Director as paper No. 2466 Journal series, Nebraska Agr. Exp. Sta., Lincoln, Nebr. and as Atomic Energy Commission Technical Information Document No. COO-1512-17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号