首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fenpyroximate is a potent inhibitor of the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I). We synthesized its photoaffinity analogue [(3)H](trifluoromethyl)phenyldiazirinylfenpyroximate ([(3)H]TDF). When bovine heart submitochondrial particles (SMP) were illuminated with UV light in the presence of [(3)H]TDF, radioactivity was mostly incorporated into a 50 kDa band. There was a good correlation between radioactivity labeling of the 50 kDa band and inhibition of the NADH oxidase activity, indicating that a 50 kDa protein is responsible for the inactivation of complex I. Blue native gel electrophoresis of the [(3)H]TDF-labeled SMP revealed that the majority of radioactivity was found in complex I. Analysis of the complex I band on an SDS gel showed a major peak of radioactivity at approximately 50 kDa. There are three subunits in complex I that migrate in this region: FP51K, IP49K, and ND5. Further analysis using the 2D gel electrophoresis implied that the labeled protein was the ND5 subunit. Labeling of the ND5 subunit was stimulated by NADH/NADPH but was prevented by various complex I inhibitors. Amiloride derivatives that are known to be inhibitors of Na(+)/H(+) antiporters also diminished the labeling. In agreement with the protective effect, we observed that the amiloride derivatives inhibited NADH-ubiquinone-1 reductase activity but not NADH-K(3)Fe(CN)(6) reductase activity in bovine SMP. These results suggest that the ND5 subunit is involved in construction of the inhibitor- and quinone-binding site(s). Furthermore, it seems likely that the ND5 subunit may participate in H(+)(Na(+)) translocation in coupling site 1.  相似文献   

2.
The nature of the ions that are translocated by Escherichia coli and Paracoccus denitrificans complexes I was investigated. We observed that E. coli complex I was capable of proton translocation in the same direction to the established deltapsi, showing that in the tested conditions, the coupling ion is the H(+). Furthermore, Na(+) transport to the opposite direction was also observed, and, although Na(+) was not necessary for the catalytic or proton transport activities, its presence increased the latter. We also observed H(+) translocation by P. denitrificans complex I, but in this case, H(+) transport was not influenced by Na(+) and also Na(+) transport was not observed. We concluded that E. coli complex I has two energy coupling sites (one Na(+) independent and the other Na(+) dependent), as previously observed for Rhodothermus marinus complex I, whereas the coupling mechanism of P. denitrificans enzyme is completely Na(+) independent. This work thus shows that complex I energy transduction by proton pumping and Na(+)/H(+) antiporting is not exclusive of the R. marinus enzyme. Nevertheless, the Na(+)/H(+) antiport activity seems not to be a general property of complex I, which may be correlated with the metabolic characteristics of the organisms.  相似文献   

3.
To identify important amino acid residues involved in intracellular pH (pH(i)) sensing of Na(+)/H(+) exchanger 1, we produced single-residue substitution mutants in the region of the exchanger encompassing the putative 11th transmembrane segment (TM11) and its adjacent intracellular (intracellular loop (IL) 5) and extracellular loops (extracellular loop 6). Substitution of Arg(440) in IL5 with other residues except positively charged Lys caused a large shift in pH(i) dependence of (22)Na(+) uptake to an acidic side, whereas substitution of Gly(455) or Gly(456) within the highly conserved glycine-rich sequence of TM11 shifted pH(i) dependence to an alkaline side. The observed alkaline shift was larger with substitution of Gly(455) with residues with increasing sizes, suggesting the involvement of the steric effect. Interestingly, mutation of Arg(440) (R440D) abolished the ATP depletion-induced acidic shift in pH(i) dependence of (22)Na(+) uptake as well as the cytoplasmic alkalinization induced by various extracellular stimuli, whereas with that of Gly(455) (G455Q) these functions were preserved. These mutant exchangers did not alter apparent affinities for extracellular transport substrates Na(+) and H(+) and the inhibitor 5-(N-ethyl-N-isopropyl)amiloride. These results suggest that positive charge at Arg(440) is required for normal pH(i) sensing, whereas mutation-induced perturbation of the TM11 structure may be involved in the effects of Gly mutations. Thus, both Arg(440) in IL5 and Gly residues in the conserved segment of TM11 appear to constitute important elements for proper functioning of the putative "pH(i) sensor" of Na(+)/H(+) exchanger 1.  相似文献   

4.
In the renal medullary thick ascending limb (MTAL), inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with amiloride or nerve growth factor (NGF) results secondarily in inhibition of the apical NHE3 Na(+)/H(+) exchanger, thereby decreasing transepithelial HCO3- absorption. MTALs from rats were studied by in vitro microperfusion to identify the mechanism underlying cross-talk between the two exchangers. The basolateral addition of 10 microM amiloride or 0.7 nM NGF decreased HCO3- absorption by 27-32%. Jasplakinolide, which stabilizes F-actin, or latrunculin B, which disrupts F-actin, decreased basal HCO3- absorption by 30% and prevented the inhibition by amiloride or NGF. Jasplakinolide had no effect on HCO3- absorption in tubules bathed with amiloride or a Na(+)-free bath to inhibit NHE1. Jasplakinolide and latrunculin B did not prevent inhibition of HCO3- absorption by vasopressin or stimulation by hyposmolality, factors that regulate HCO3- absorption through primary effects on apical Na(+)/H(+) exchange. Treatment of MTALs with amiloride or NGF for 15 min decreased polymerized actin with no change in total cell actin, as assessed both by fluorescence microscopy and by actin Triton X-100 solubility. Jasplakinolide prevented amiloride-induced actin remodeling. Vasopressin, which inhibits HCO3- absorption by an amount similar to that observed with amiloride and NGF but does not act via NHE1, did not affect cellular F-actin content. These results indicate that basolateral NHE1 regulates apical NHE3 and HCO3- absorption in the MTAL by controlling the organization of the actin cytoskeleton.  相似文献   

5.
6.
The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Recently, it was demonstrated that complex I from Klebsiella pneumoniae translocates sodium ions instead of protons. Experimental evidence suggested that complex I from the close relative Escherichia coli works as a primary sodium pump as well. However, data obtained with whole cells showed the presence of an NADH-induced electrochemical proton gradient. In addition, Fourier transform IR spectroscopy demonstrated that the redox reaction of the E. coli complex I is coupled to a protonation of amino acids. To resolve this contradiction we measured the properties of isolated E. coli complex I reconstituted in phospholipids. We found that the NADH:ubiquinone oxidoreductase activity did not depend on the sodium concentration. The redox reaction of the complex in proteoliposomes caused a membrane potential due to an electrochemical proton gradient as measured with fluorescent probes. The signals were sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the inhibitors piericidin A, dicyclohexylcarbodi-imide (DCCD), and amiloride derivatives, but were insensitive to the sodium ionophore ETH-157. Furthermore, monensin acting as a Na(+)/H(+) exchanger prevented the generation of a proton gradient. Thus, our data demonstrated that the E. coli complex I is a primary electrogenic proton pump. However, the magnitude of the pH gradient depended on the sodium concentration. The capability of complex I for secondary Na(+)/H(+) antiport is discussed.  相似文献   

7.
The electrogenic NADH:Q oxidoreductase from the enterobacterium Klebsiella pneumoniae transports Na(+) ions. The complex was purified with an increase of the specific Na(+) transport activity from 0.2 micromol min(-1) mg(-1) in native membrane vesicles to 4.7 micromol min(-1) mg(-1) in reconstituted enzyme specimens. The subunit pattern resembled that of complex I from Escherichia coli, and two prominent polypeptides were identified as the NuoF and NuoG subunits of complex I. During purification the typical cofactors of complex I were enriched to yield approximately 17 nmol mg(-1) iron, 24 nmol mg(-1) acid-labile sulfide, and 0.79 nmol mg(-1) FMN in the purified sample. The enzyme contained approximately 1.2 nmol mg(-1) Q6 and 1.5 nmol mg(-1) Q8. The reduction of ubiquinone by NADH was Na(+)-dependent, which indicates coupling of the chemical and the vectorial reaction of the pump. The Na(+) activation profile corresponded to the Hill equation with a Hill coefficient K(H)(Na(+)) = 1.96 and with a half-maximal saturation at 0.33 mm Na(+). The reconstituted complex I from Klebsiella pneumoniae catalyzed deamino-NADH oxidation, Q1 reduction, and Na(+) translocation with specific activities of 2.6 units mg(-1), 2.4 units mg(-1), and 4.7 units mg(-1), respectively, which indicate a Na(+)/electron stoichiometry of one.  相似文献   

8.
Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood cells (RBCs) to phorbol esters in isotonic medium results in a simultaneous, dose-dependent activation of both Na(+)/H(+) and K(+)/H(+) exchangers. We tested the hypothesis that in Amphiuma RBCs, both shrinkage-induced Na(+)/H(+) exchange and swelling-induced K(+)/H(+) exchange are activated by phosphorylation-dependent reactions. To this end, we assessed the effect of calyculin A, a phosphatase inhibitor, on the activity of the aforementioned exchangers. We found that exposure of Amphiuma RBCs to calyculin-A in isotonic media results in simultaneous, 1-2 orders of magnitude increase in the activity of both K(+)/H(+) and Na(+)/H(+) exchangers. We also demonstrate that, in isotonic media, calyculin A-dependent increases in net Na(+) uptake and K(+) loss are a direct result of phosphatase inhibition and are not dependent on changes in cell volume. Whereas calyculin A exposure in the absence of volume changes results in stimulation of both the Na(+)/H(+) and K(+)/H(+) exchangers, superimposing cell swelling or shrinkage and calyculin A treatment results in selective activation of K(+)/H(+) or Na(+)/H(+) exchange, respectively. We conclude that kinase-dependent reactions are responsible for Na(+)/H(+) and K(+)/H(+) exchange activity, whereas undefined volume-dependent reactions confer specificity and coordinated control.  相似文献   

9.
Eukaryotic Na(+)/H(+) exchangers are transmembrane proteins that are vital for cellular homeostasis and play key roles in pathological conditions such as cancer and heart diseases. Using the crystal structure of the Na(+)/H(+) antiporter from Escherichia coli (EcNhaA) as a template, we predicted the three-dimensional structure of human Na(+)/H(+) exchanger 1 (NHE1). Modeling was particularly challenging because of the extremely low sequence identity between these proteins, but the model structure is supported by evolutionary conservation analysis and empirical data. It also revealed the location of the binding site of NHE inhibitors; which we validated by conducting mutagenesis studies with EcNhaA and its specific inhibitor 2-aminoperimidine. The model structure features a cluster of titratable residues that are evolutionarily conserved and are located in a conserved region in the center of the membrane; we suggest that they are involved in the cation binding and translocation. We also suggest a hypothetical alternating-access mechanism that involves conformational changes.  相似文献   

10.
11.
This study was conducted to determine whether the contributions of epidermal growth factor (EGF) to gastric mucosal restitution after injury are mediated by stimulation of Na(+)/H(+) exchangers in surface mucous cells (SMC). Intact sheets of guinea pig gastric mucosae were incubated in vitro. Intracellular pH (pH(i)) in SMC was measured fluorometrically, using 2',7'- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. Restitution after Triton X-100-induced injury was evaluated by recovery of electrical resistance. At neutral luminal pH, exogenous EGF (ex-EGF) increased pH(i) and enhanced restitution in the absence but not in the presence of serosal HCO. During exposure to luminal acid, ex-EGF not only prevented intracellular acidosis but also promoted restitution. These effects of ex-EGF were blocked by serosal amiloride or anti-EGF-receptor antibody. In the absence of ex-EGF, restitution was inhibited by replacement of luminal and serosal solutions with fresh solutions and was blocked more completely by serosal anti-EGF-receptor antibody. These results suggest that both endogenous and ex-EGF contribute to restitution via basolateral EGF receptors, with effects mediated, at least in part, by stimulation of basolateral Na(+)/H(+) exchangers.  相似文献   

12.
Na(+)/H(+)-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na(+)-dependent processes to acid extrusion, 2) sensitivity to Na(+)/H(+) exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pH(i)) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na(+) concentration ([Na(+)](o)) during pH(i) recovery decreased H(+) efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na(+). The Na(+)/H(+) exchange inhibitors ethylisopropylamiloride and amiloride inhibited H(+) efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na(+)](o) and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na(+)/H(+) exchange by isoforms NHE1, NHE2, and NHE3.  相似文献   

13.
A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO(3)(-). Here, we examined the role of the apical NHE3 and basolateral NHE1 Na(+)/H(+) exchangers in this adaptation. MTALs from rats drinking H(2)O or 0.28 M NaCl for 5-7 days were perfused in vitro. High sodium intake increased HCO(3)(-) absorption rate by 60%. The increased HCO(3)(-) absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO(3)(-) absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na(+)/H(+) exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na(+)/H(+) exchange activity by 30% under conditions in which basolateral Na(+)/H(+) exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO(3)(-) absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO(3)(-) absorption. The adaptive increases in Na(+)/H(+) exchange activity and HCO(3)(-) absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance.  相似文献   

14.
We previously reported that the human Na(+)/nucleoside transporter pyrimidine-preferring 1 (hCNT1) is electrogenic and transports gemcitabine and 5'-deoxy-5-fluorouridine, a precursor of the active drug 5-fluorouracil. Nevertheless, a complete electrophysiological characterization of the basic properties of hCNT1-mediated translocation has not been performed yet, and the exact role of adenosine in hCNT1 function has not been addressed either. In the present work we have used the two-electrode voltage clamp technique to investigate hCNT1 transport mechanism and study the kinetic properties of adenosine as an inhibitor of hCNT1. We show that hCNT1 exhibits presteady-state currents that disappear upon the addition of adenosine or uridine. Adenosine, a purine nucleoside described as a substrate of the pyrimidine-preferring transporters, is not a substrate of hCNT1 but a high affinity blocker able to inhibit uridine-induced inward currents, the Na(+)-leak currents, and the presteady-state currents, with a K(i) of 6.5 microM. The kinetic parameters for uridine, gemcitabine, and 5'-deoxy-5-fluorouridine were studied as a function of membrane potential; at -50 mV, K(0.5) was 37, 18, and 245 microM, respectively, and remained voltage-independent. I(max) for gemcitabine was voltage-independent and accounts for approximately 40% that for uridine at -50 mV. Maximal current for 5'-DFUR was voltage-dependent and was approximately 150% that for uridine at all membrane potentials. K(0.5)(Na(+)) for Na(+) was voltage-independent at hyperpolarized membrane potentials (1.2 mM at -50 mV), whereas I(max)(Na(+)) was voltage-dependent, increasing 2-fold from -50 to -150 mV. Direct measurements of (3)H-nucleoside or (22)Na fluxes with the charge-associated revealed a ratio of two positive inward charges per nucleoside and one Na(+) per positive inward charge, suggesting a stoichiometry of two Na(+)/nucleoside.  相似文献   

15.
In the mouse macrophage-like cell line RAW 264, vacuolar-type (H(+))-ATPase (V-ATPase) inhibitors, bafilomycin A(1) and concanamycin A, increased the level of cyclooxygenase (COX)-2 protein and its mRNA. The V-ATPase inhibitor-induced expression of COX-2 was suppressed by inhibitors of c-jun N-terminal kinase (JNK) and nuclear factor-kappaB, and by inhibitors of Na(+)/H(+) exchangers (NHEs). The bafilomycin A(1)-induced activation of JNK but not degradation of IkappaB-alpha was suppressed by NHE inhibitors and by an inhibitor of Na(+)/Ca(2+) exchanger SN-6. These results suggested that V-ATPase inhibitors induce the expression of COX-2 via NHE-dependent and -independent pathways.  相似文献   

16.
Enhanced Na(+)/H(+) exchange, measured as amiloride derivative-sensitive Na(+) and H(+) fluxes in cells with a preliminary acidified cytoplasm (Deltamu(H+)-induced Na(+)/H(+) exchange), is one of the most prominent intermediate phenotypes of altered vascular smooth muscle cell (VSMC) function in spontaneously hypertensive rats (SHR). Analysis of Na(+)/H(+) exchange in F(2) hybrids of SHR and normotensive rats seems to be the most appropriate approach in the search for the genetic determinants of abnormal activity of this carrier. However, the measurement of Deltamu(H+)-induced Na(+)/H(+) exchange is hardly appropriate for precise analysis of the carrier's activity in VSMC derived from several hundred F(2) hybrids. To overcome this problem, we compared the rate of (22)Na influx under baseline conditions and in Na(+)-loaded (ouabain-treated) VSMC. The dose-dependency of the rate of Deltamu(H+)-induced H(+) efflux as well as of (22)Na influx in control and ouabain-treated cells on ethylisopropylamiloride (EIPA) concentration were not different (K(0.5) approximately 0.3 microM), suggesting that these ion transport pathways are mediated by the same carrier. EIPA-sensitive (22)Na influx in Na(+)-loaded cells was approximately 6-fold higher than in ouabain-untreated VSMC and was increased by 50-70% in two different substrains of SHR. About the same increment of EIPA-sensitive (22)Na influx in Na(+)-loaded VSMC was observed in 5- to 6-week-old SHR (an age at which hypertension has not yet developed) as well as in stroke-prone SHR (SHRSP) with severe hypertension, indicating that the heightened activity of Na(+)/H(+) exchange is not a consequence of long-term blood pressure elevation. To examine whether or not the augmented activity of Na(+)/H(+) exchange in SHR is caused by mutation of NHE1, i.e. the only isoform of this carrier expressed in VSMC, we undertook single-stranded conformational polymorphism analysis of 23 NHE1 cDNA fragments from SHR and SHRSP and sequencing of the 456-2421 NHE1 cDNA fragment. This study did not reveal any mutation in the entire coding region of NHE1. The lack of mutation in the coding region of NHE1 indicates that the augmented activity of the ubiquitous Na(+)/H(+) exchanger in primary hypertension is caused by altered regulation of carrier turnover number or/and its plasma membrane content.  相似文献   

17.
Regulation of intra- and extracellular ion activities (e.g. H(+), Cl(-), Na(+)) is key to normal function of the central nervous system, digestive tract, respiratory tract, and urinary system. With our cloning of an electrogenic Na(+)/HCO(3)(-) cotransporter (NBC), we found that NBC and the anion exchangers form a bicarbonate transporter superfamily. Functionally three other HCO(3)(-) transporters are known: a neutral Na(+)/ HCO(3)(-) cotransporter, a K(+)/ HCO(3)(-) cotransporter, and a Na(+)-dependent Cl(-)-HCO(3)(-) exchanger. We report the cloning and characterization of a Na(+)-coupled Cl(-)-HCO(3)(-) exchanger and a physiologically unique bicarbonate transporter superfamily member. This Drosophila cDNA encodes a 1030-amino acid membrane protein with both sequence homology and predicted topology similar to the anion exchangers and NBCs. The mRNA is expressed throughout Drosophila development and is prominent in the central nervous system. When expressed in Xenopus oocytes, this membrane protein mediates the transport of Cl(-), Na(+), H(+), and HCO(3)(-) but does not require HCO(3)(-). Transport is blocked by the stilbene 4,4'-diisothiocyanodihydrostilbene- 2, 2'-disulfonates and may not be strictly electroneutral. Our functional data suggest this Na(+) driven anion exchanger (NDAE1) is responsible for the Na(+)-dependent Cl(-)-HCO(3)(-) exchange activity characterized in neurons, kidney, and fibroblasts. NDAE1 may be generally important for fly development, because disruption of this gene is apparently lethal to the Drosophila larva.  相似文献   

18.
GerN, a Bacillus cereus spore germination protein, exhibits homology to a widely distributed group of putative cation transporters or channel proteins. GerN complemented the Na(+)-sensitive phenotype of an Escherichia coli mutant that is deficient in Na(+)/H(+) antiport activity (strain KNabc). GerN also reduced the concentration of K(+) required to support growth of an E. coli mutant deficient in K(+) uptake (strain TK2420). In a fluorescence-based assay of everted E. coli KNabc membrane vesicles, GerN exhibited robust Na(+)/H(+) antiport activity, with a K(m) for Na(+) estimated at 1.5 mM at pH 8.0 and 25 mM at pH 7.0. Li(+), but not K(+), served as a substrate. GerN-mediated Na(+)/H(+) antiport was further demonstrated in everted vesicles as energy-dependent accumulation of (22)Na(+). GerN also used K(+) as a coupling ion without completely replacing H(+), as indicated by partial inhibition by K(+) of H(+) uptake into right-side-out vesicles loaded with Na(+). K(+) translocation as part of the antiport was supported by the stimulatory effect of intravesicular K(+) on (22)Na(+) uptake by everted vesicles and the dependence of GerN-mediated (86)Rb(+) efflux on the presence of Na(+) in trans. The inhibitory patterns of protonophore and thiocyanate were most consistent with an electrogenic Na(+)/H(+)-K(+) antiport. GerN-mediated Na(+)/H(+)-K(+) antiport was much more rapid than GerN-mediated Na(+)/H(+) antiport.  相似文献   

19.
We have compared the pharmacological properties of the human placental brush-border membrane Na(+)-H+ exchanger with those of the rabbit renal brush-border membrane Na(+)-H+ exchanger. The exchanger activity in both preparations was inhibited by cimetidine, clonidine, and harmaline. Cimetidine was found to be 4-5 times more potent than clonidine in inhibiting the placental Na+-H+ exchanger. However, the order of potency was reversed for the renal exchanger, in which case clonidine was 3-4 times more potent than cimetidine as an inhibitor. There was, however, no difference between the potencies of harmaline to inhibit the two exchangers. When amiloride and four of its analogs were tested as inhibitors, the Na(+)-H+ exchanger of the placental brush-border membrane exhibited greater sensitivity to inhibition by all of these compounds than the Na(+)-H+ exchanger of the renal brush-border membrane. The difference between the two exchangers was more prominent with the 5-amino-substituted amiloride derivatives than with amiloride. The greatest difference between the Ki values was for dimethylamiloride (the kidney/placenta ratio was 185), followed by ethylisopropyl amiloride, hexamethylene amiloride, and t-butyl amiloride. These results indicate that the two Na+-H+ exchangers are pharmacologically distinct.  相似文献   

20.
We propose a reaction model for the palytoxin-sodium-potassium (PTX-Na(+)/K(+)) pump complex. The model, which is similar to the Albers-Post model for Na(+)/K(+)-ATPase, is used to elucidate the effect of PTX on Na(+)/K(+)-ATPase during the enzyme interactions with Na(+) and/or K(+) ions. Conformational substates and reactions for the pump are incorporated into the Albers-Post model to represent enzymes with or without bound PTX. A mathematical model based on the reaction scheme is used in simulations modeling experimental studies of PTX-induced ionic currents. Our simulations suggest that (i) extracellular Na(+) as well as K(+) promotes PTX-induced channel blockage; (ii) extracellular K(+) accelerates PTX unbinding; and (iii) K(+) occlusion in the PTX-pump complex is essential for describing the PTX-induced current dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号