首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a continuous fluorescence assay based on fluorescence resonance energy transfer (FRET) for the monitoring of RNA helicase activity in vitro. The assay is tested using the hepatitis C virus (HCV) NS3 helicase as a model. We prepared a double-stranded RNA (dsRNA) substrate with a 5′ fluorophore-labeled strand hybridized to a 3′ quencher-labeled strand. When the dsRNA is unwound by helicase, the fluorescence of the fluorophore is emitted following the separation of the strands. Unlike in conventional gel-based assays, this new assay eliminates the complex and time-consuming steps, and can be used to simply measure the real-time kinetics in a single helicase reaction. Our results demonstrate that Alexa Fluor 488 and BHQ1 are an effective fluorophore-quencher pair, and this assay is suitable for the quantitative measurement of the RNA helicase activity of HCV NS3. Moreover, we found that several extracts of marine organisms exhibited different inhibitory effects on the RNA and DNA helicase activities of HCV NS3. We propose that this assay will be useful for monitoring the detailed kinetics of RNA unwinding mechanisms and screening RNA helicase inhibitors at high throughput.  相似文献   

2.
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state Pi release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure.  相似文献   

3.
To determine whether the two domains of hepatitis C virus (HCV) NS3 and the NS4A interact with each other to regulate the RNA unwinding activity, this study compares the RNA unwinding, ATPase and RNA binding activities of three forms of NS3 proteins--the NS3H protein, containing only the helicase domain, the full-length NS3 protein, and the NS3-NS4A complex. The results revealed that NS3 displayed the weakest RNA helicase activity, not because it had lower ATPase or RNA binding activity than did NS3H or NS3-NS4A, but because it had the lowest RNA unwinding processivity. A mutant protein, R1487Q, which contained a mutation in the helicase domain, displayed a reduced protease activity as compared to the wild-type NS3-NS4A. Together, these results suggest the existence of interactions between the two domains of NS3 and the NS4A, which regulates the HCV NS3 protease and RNA helicase activities.  相似文献   

4.
RNA helicase A (RHA) as a member of DExH‐box subgroup of helicase superfamily II, participates in diverse biological processes involved in RNA metabolism in organisms, and these RNA‐mediated biological processes rely on RNA structure conversion. However, how RHA regulate the RNA structure conversion was still unknown. In order to unveil the mechanism of RNA structure conversion mediated by RHA, single molecule fluorescence resonance energy transfer was adopted to in our assay, and substrates RNA were from internal ribosome entry site of foot‐and‐mouth disease virus genome. We first found that the RNA structure conversion by RHA against thermodynamic equilibrium in vitro, and the process of dsRNA YZ converted to dsRNA XY through a tripartite intermediate state. In addition, the rate of the RNA structure conversion and the distribution of dsRNA YZ and XY were affected by ATP concentrations. Our study provides real‐time insight into ATP‐dependent RHA‐assisted RNA structure conversion at the single molecule level, the mechanism displayed by RHA may help in understand how RHA contributes to many biological functions, and the basic mechanistic features illustrated in our work also underlay more complex protein‐assisted RNA structure conversions.  相似文献   

5.
Hepatitis C virus (HCV)-encoded nonstructural protein 3 (NS3) possesses protease, NTPase, and helicase activities, which are considered essential for viral proliferation. Thus, HCV NS3 is a good putative therapeutic target protein for the development of anti-HCV agents. In this study, we isolated specific RNA aptamers to the helicase domain of HCV NS3 from a combinatorial RNA library with 40-nucleotide random sequences using in vitro selection techniques. The isolated RNAs were observed to very avidly bind the HCV helicase with an apparent Kd of 990 pM in contrast to original pool RNAs with a Kd of >1 microM. These RNA ligands appear to impede binding of substrate RNA to the HCV helicase and can act as potent decoys to competitively inhibit helicase activity with high efficiency compared with poly(U) or tRNA. The minimal binding domain of the ligands was determined to evaluate the structural features of the isolated RNA molecules. Interestingly, part of binding motif of the RNA aptamers consists of similar secondary structure to the 3'-end of HCV negative-strand RNA. Moreover, intracellular NS3 protein can be specifically detected in situ with the RNA aptamers, indicating that the selected RNAs are very specific to the HCV NS3 helicase. Furthermore, the RNA aptamers partially inhibited RNA synthesis of HCV subgenomic replicon in Huh-7 hepatoma cell lines. These results suggest that the RNA aptamers selected in vitro could be useful not only as therapeutic and diagnostic agents of HCV infection but also as a powerful tool for the study of HCV helicase mechanism.  相似文献   

6.
The NS3 protein of the hepatitis C virus (HCV) is a 631 amino acid residue bifunctional enzyme with a serine protease localized to the N-terminal 181 residues and an RNA helicase located in the C-terminal 450 residues. The HCV NS3 RNA helicase consists of three well-defined subdomains which all contribute to its helicase activity. The second subdomain of the HCV helicase is flexibly linked to the remainder of the NS3 protein and could undergo rigid-body movements during the unwinding of double-stranded RNA. It also contains several motifs that are implicated in RNA binding and in coupling NTP hydrolysis to nucleic acid unwinding and translocation. As part of our efforts to use NMR techniques to assist in deciphering the enzyme's structure-function relationships and developing specific small molecule inhibitors, we have determined the solution structure of an engineered subdomain 2 of the NS3 RNA helicase of HCV, d(2Delta)-HCVh, and studied the backbone dynamics of this protein by (15)N-relaxation experiments using a model-free approach. The NMR studies on this 142-residue construct reveal that overall subdomain 2 of the HCV helicase is globular and well structured in solution even in the absence of the remaining parts of the NS3 protein. Its solution structure is very similar to the corresponding parts in the X-ray structures of the HCV NS3 helicase domain and intact bifunctional HCV NS3 protein. Slow hydrogen-deuterium exchange rates map to a well-structured, stable hydrophobic core region away from the subdomain interfaces. In contrast, the regions facing the subdomain interfaces in the HCV NS3 helicase domain are less well structured in d(2Delta)-HCVh, show fast hydrogen-deuterium exchange rates, and the analysis of the dynamic properties of d(2Delta)-HCVh reveals that these regions of the protein show distinct dynamical features. In particular, residues in motif V, which may be involved in transducing allosteric effects of nucleotide binding and hydrolysis on RNA binding, exhibit slow conformational exchange on the milli- to microsecond time-scale. The intrinsic conformational flexibility of this loop region may facilitate conformational changes required for helicase function.  相似文献   

7.
In vitro selection of RNA aptamers against the HCV NS3 helicase domain   总被引:1,自引:0,他引:1  
Nonstructural protein 3 (NS3) of hepatitis C virus (HCV) has two distinct domains, protease and helicase, that are essential for HCV proliferation. Therefore, NS3 is considered a target for anti-HCV treatment. To study RNA aptamers of the NS3 helicase domain, we carried out in vitro selection against the HCV NS3 helicase domain. RNA aptamers obtained after eight generations possessed 5' extended single-stranded regions and the conserved sequence (5'-GGA(U/C)GGAGCC-3') at stem-loop regions. Aptamer 5 showed strong inhibition of helicase activity in vitro. Deletion and mutagenesis analysis clarified that the conserved stem-loop is important and that the whole structure is needed for helicase inhibition. We compared the inhibition of helicase activity between aptamer 5 and 3'+-UTR of HCV.  相似文献   

8.
The RNA helicase/protease NS3 plays a central role in the RNA replication of hepatitis C virus (HCV), a cytoplasmic RNA virus that represents a major worldwide health problem. NS3 is, therefore, an important drug target in the effort to combat HCV. Most work has focused on the protease, rather than the helicase, activities of the enzyme. In order to further characterize NS3 helicase activity, we evaluated individual stages of duplex unwinding by NS3 alone and in complex with cofactor NS4A. Despite a putative replicative role in RNA unwinding, we found that NS3 alone is a surprisingly poor helicase on RNA, but that RNA activity is promoted by cofactor NS4A. In contrast, NS3 alone is a highly processive helicase on DNA. Phylogenetic analysis suggests that this robust DNA helicase activity is not vestigial and may have specifically evolved in HCV. Given that HCV has no replicative DNA intermediate, these findings suggest that NS3 may have the capacity to affect host DNA.  相似文献   

9.
Together with the NS5 polymerase, the NS3 helicase has a pivotal function in flavivirus RNA replication and constitutes an important drug target. We captured the dengue virus NS3 helicase at several stages along the catalytic pathway including bound to single‐stranded (ss) RNA, to an ATP analogue, to a transition‐state analogue and to ATP hydrolysis products. RNA recognition appears largely sequence independent in a way remarkably similar to eukaryotic DEAD box proteins Vasa and eIF4AIII. On ssRNA binding, the NS3 enzyme switches to a catalytic‐competent state imparted by an inward movement of the P‐loop, interdomain closure and a change in the divalent metal coordination shell, providing a structural basis for RNA‐stimulated ATP hydrolysis. These structures demonstrate for the first time large quaternary changes in the flaviviridae helicase, identify the catalytic water molecule and point to a β‐hairpin that protrudes from subdomain 2, as a critical element for dsRNA unwinding. They also suggest how NS3 could exert an effect as an RNA‐anchoring device and thus participate both in flavivirus RNA replication and assembly.  相似文献   

10.
The nonstructural protein 3 (NS3) of hepatitis C virus contains a protease domain at its amino terminus and RNA helicase domain at its carboxyl terminus. To identify optimal NS3 protein for developing screening assays, we expressed full-length NS3 protease/helicase and helicase domains from both HCV type 1a (H77 strain) and 1b (Con1 strain), using either E. coli or baculovirus expression systems. Our studies showed that the full-length NS3 proteins, either with or without the presence of the NS4A domain, from either strains were at least 10-fold more efficient than the corresponding helicase domains in unwinding partial duplex RNA substrates. These findings provide a rationale for the use of full-length NS3 in high throughput screening assays to identify potent small molecule inhibitors of this important target of HCV.  相似文献   

11.
Hepatitis C virus (HCV) NS5B protein has been shown to have RNA-dependent RNA polymerase (RdRp) activity by itself and is a key enzyme involved in viral replication. Using analyses with the yeast two-hybrid system and in vitro binding assay, we found that human eukaryotic initiation factor 4AII (heIF4AII), which is a component of the eIF4F complex and RNA-dependent ATPase/helicase, interacted with NS5B protein. These two proteins were shown to be partially colocalized in the perinuclear region. The binding site in HCV NS5B protein was localized within amino acid residues 495 to 537 near the C terminus. Since eIF4A has a helicase activity and functions in a bidirectional manner, the binding of HCV NS5B protein to heIF4AII raises the possibility that heIF4AII facilitates the genomic RNA synthesis of NS5B protein by unwinding the secondary structure of the HCV genome and is a host component of viral replication complex.  相似文献   

12.
C L Tai  W K Chi  D S Chen    L H Hwang 《Journal of virology》1996,70(12):8477-8484
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.  相似文献   

13.
In previous works, we demonstrated a potent inhibition of diverse protein kinase C (PKC) functions by a fragment of nonstructural protein 3 (NS3) of hepatitis C virus (HCV), mainly mediated by the Arg-rich amino acid motif HCV(1487-1500). This sequence is localized on the surface of Domain 2 of the NS3 NTPase/helicase in direct vicinity to a flexible loop that is localized between Val1458 and Thr1476. Here, we assessed the regulation of the accessibility of the Arg-rich amino acid motif for PKC by this loop, using two variants of domain 2. The first construct, termed NS3d2Delta, comprises the complete domain, HCV(1361-1503), devoid the loop. The second variant, NS3d2wt corresponds to wild type domain 2. The results indicated an enhanced inhibitory potential of NS3d2Delta towards rat brain PKC and towards the majority of PKC isoforms. This effect and the accompanying change of the mode of inhibition from a mixed mode, exerted by NS3d2wt to a competitive mode, exerted by NS3d2Delta are caused by the deletion of the loop. Accordingly, the presence of the intact loop abolished the binding of domain 2 to the tailed duplex RNA used as helicase substrate, without affecting the binding of dsDNA. Furthermore, a direct competition of dsRNA and PKC for the same binding site HCV(1487-1500), could be documented. The binding of dsRNA to NS3d2Delta previously overlaid with PPKCalpha was reduced to 30% and completely abolished in case of NS3d2Delta overlaid with cAMP-dependent protein kinase A (PKA).  相似文献   

14.
Zhang C  Cai Z  Kim YC  Kumar R  Yuan F  Shi PY  Kao C  Luo G 《Journal of virology》2005,79(14):8687-8697
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses multiple enzyme activities. The N-terminal one-third of NS3 primarily functions as a serine protease, while the remaining two-thirds of NS3 serve as a helicase and nucleoside triphosphatase. Whether the multiple enzyme activities of NS3 are functionally interdependent and/or modulated by other viral NS proteins remains unclear. We performed biochemical studies to examine the functional interdependence of the NS3 protease and helicase domains and the modulation of NS3 helicase by NS5B, an RNA-dependent RNA polymerase (RdRp). We found that the NS3 protease domain of the full-length NS3 (NS3FL) enhances the NS3 helicase activity. Additionally, HCV RdRp stimulates the NS3FL helicase activity by more than sevenfold. However, the helicase activity of the NS3 helicase domain was unaffected by HCV RdRp. Glutathione S-transferase pull-down as well as fluorescence anisotropy results revealed that the NS3 protease domain is required for specific NS3 and NS5B interaction. These findings suggest that HCV RdRp regulates the functions of NS3 during HCV replication. In contrast, NS3FL does not increase NS5B RdRp activity in vitro, which is contrary to a previously published report that the HCV NS3 enhances NS5B RdRp activity.  相似文献   

15.
The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) helicase is believed to be essential for viral replication and has become an attractive target for the development of antiviral drugs. The study of helicase is useful for elucidating its involvement in positive sense single-stranded RNA virus replication and to serve as templates for the design of novel antiviral drugs. In recent years, several models have been proposed on the conformational change leading to protein movement and RNA unwinding. Some compounds have been recently reported to inhibit the helicase and these include small molecules, RNA aptamers and antibodies. The current study is designed to help gain insights for the consideration of potential inhibitors for Pakistani HCV NS3 helicase protein. We have cloned, expressed and purified HCV NS3 helicase from Pakistani HCV serum samples and determined its 3D structure and employed it further in computational docking analysis to identify inhibitors against HCV genotype 3a (GT3a),including six antiviral key molecules such as quercetin, beta-carotene, resveratrol, catechins, lycopene and lutein. The conformation obtained after docking showed good hydrogen bond (HBond) interactions with best docking energy for quercetin and catechins followed by resveratrol and lutein. These anti-helicase key molecules will offer an alternative attraction to target the viral helicase, due to the current limitation with the interferon resistance treatment and presences of high rate of resistance in anti-protease inhibitor classes.  相似文献   

16.
BACKGROUND: Hepatitis C virus (HCV) currently infects approximately 3% of the world's population. HCV RNA is translated into a polyprotein that during maturation is cleaved into functional components. One component, nonstructural protein 3 (NS3), is a 631-residue bifunctional enzyme with protease and helicase activities. The NS3 serine protease processes the HCV polyprotein by both cis and trans mechanisms. The structural aspects of cis processing, the autoproteolysis step whereby the protease releases itself from the polyprotein, have not been characterized. The structural basis for inclusion of protease and helicase activities in a single polypeptide is also unknown. RESULTS: We report here the 2.5 A resolution structure of an engineered molecule containing the complete NS3 sequence and the protease activation domain of nonstructural protein 4A (NS4A) in a single polypeptide chain (single chain or scNS3-NS4A). In the molecule, the helicase and protease domains are segregated and connected by a single strand. The helicase necleoside triphosphate and RNA interaction sites are exposed to solvent. The protease active site of scNS3-NS4A is occupied by the NS3 C terminus, which is part of the helicase domain. Thus, the intramolecular complex shows one product of NS3-mediated cleavage at the NS3-NS4A junction of the HCV polyprotein bound at the protease active site. CONCLUSIONS: The scNS3-NS4A structure provides the first atomic view of polyprotein cis processing. Both local and global structural rearrangements follow the cis cleavage reaction, and large segments of the polyprotein can be folded prior to proteolytic processing. That the product complex of the cis cleavage reaction exists in a stable molecular conformation suggests autoinhibition and substrate-induced activation mechanisms for regulation of NS3 protease activity.  相似文献   

17.
The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)(8) oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.  相似文献   

18.
The hepatitis C virus non-structural protein 3 (HCV NS3) possesses both protease and helicase activities that are essential for viral replication. In a previous study, we obtained RNA aptamers that specifically and efficiently inhibited NS3 protease activity (G9 aptamers). In order to add helicase-inhibition capability, we attached (U)14 to the 3'-terminal end of a minimized G9 aptamer, DeltaNEO-III. NEO-III-14U was shown to inhibit the NS3 protease activity more efficiently than the original aptamer and, furthermore, to efficiently inhibit the unwinding reaction by NS3 helicase. In addition, NEO-III-14U has the potential to diminish specific interactions between NS3 and the 3'-UTR of HCV-positive and -negative strands. NEO-III-14U showed effective inhibition against NS3 protease in living cells.  相似文献   

19.
The JFH-1 strain of hepatitis C virus (HCV) is a genotype 2a strain that can replicate autonomously in Huh7 cells. The J6 strain is also a genotype 2a strain, but its full genomic RNA does not replicate in Huh7 cells. However, chimeric J6/JFH-1 RNA that has J6 structural-protein-coding regions and JFH-1 nonstructural-protein-coding regions can replicate autonomously and produce infectious HCV particles. In order to determine the mechanisms underlying JFH-1 RNA replication, we constructed various J6/JFH-1 chimeras and tested their RNA replication and virus particle production abilities in Huh7 cells. Via subgenomic-RNA-replication assays, we found that both the JFH-1 NS5B-to-3'X (N5BX) and the NS3 helicase (N3H) regions are important for the replication of the J6CF replicon. We applied these results to full-length genomic RNA replication and analyzed replication using Northern blotting. We found that a chimeric J6 clone with JFH-1 N3H and N5BX could replicate autonomously but that a chimeric J6 clone with only JFH-1 N5BX had no replication ability. Finally, we tested the virus production abilities of these clones and found that a chimeric J6 clone with JFH-1 N3H and N5BX could produce infectious HCV particles. In conclusion, the JFH-1 NS3 helicase and NS5B-to-3'X regions are important for efficient replication and virus particle formation of HCV genotype 2a strains.  相似文献   

20.
Rho J  Choi S  Seong YR  Choi J  Im DS 《Journal of virology》2001,75(17):8031-8044
The NS3 protein of hepatitis C virus (HCV) contains protease and RNA helicase activities, both of which are likely to be essential for HCV propagation. An arginine residue present in the arginine-glycine (RG)-rich region of many RNA-binding proteins is posttranslationally methylated by protein arginine methyltransferases (PRMTs). Amino acid sequence analysis revealed that the NS3 protein contains seven RG motifs, including two potential RG motifs in the 1486-QRRGRTGRG-1494 motif IV of the RNA helicase domain, in which arginines are potentially methylated by PRMTs. Indeed, we found that the full-length NS3 protein is arginine methylated in vivo. The full-length NS3 protein and the NS3 RNA helicase domain were methylated by a crude human cell extract. The purified PRMT1 methylated the full-length NS3 and the RNA helicase domain, but not the NS3 protease domain. The NS3 helicase bound specifically and comigrated with PRMT1 in vitro. Mutational analyses indicate that the Arg(1493) in the QRR(1488)GRTGR(1493)G region of the NS3 RNA helicase is essential for NS3 protein methylation and that Arg(1488) is likely methylated. NS3 protein methylation by the PRMT1 was decreased in the presence of homoribopolymers, suggesting that the arginine-rich motif IV is involved in RNA binding. The results suggest that an arginine residue(s) in QRXGRXGR motif IV conserved in the virus-encoded RNA helicases can be posttranslationally methylated by the PRMT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号