首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
A species’ thermal sensitivity and its exposure to climate variation are key components in the prediction of its vulnerability to climate change. We tested the thermal sensitivity of a tropical amphibian that lives in a mild constant climate in which the thermal tolerance range is expected to closely match the experienced environmental temperature. The air temperature that this species is exposed to varies between 21.9 and 31.6°C with an annual mean of 27.2°C. We estimated the microhabitat water temperature variation under vegetation shade, which buffers the temperature by 1.8°C in relation to that of the air, and with open canopy, where the water was 1.9°C warmer than the air temperature. With broods of tadpoles split into five treatments (15°C, 21°C, 28°C, 31°C, and 33°C), we estimated the critical thermal maximum (CTMax) and critical thermal minimum (CTMin) after at least 7 days of acclimation. Both CTMax (42.3°C) and CTMin (11.8°C) were more extreme than the temperature range estimated for the field. We estimated the optimum temperature (To = 28.8°C) and the thermal performance breadth (range: 23.3–34.1°C) based on growth rate (g/day). The animals were able to acclimate more extensively to cold than to warm temperatures. These performance curve traits closely matched the air temperature. The estimated vulnerability varied according to the microhabitat prediction model used. The combination of tadpole data on thermal sensitivity and macro‐ and microhabitat variation provides a necessary framework to understand the effects of climate change on tropical amphibians.  相似文献   

3.
Most research in physiological ecology has focused on the effects of mean changes in temperature under the classic “hot vs cold” acclimation treatment; however, current evidence suggests that an increment in both the mean and variance of temperature could act synergistically to amplify the negative effects of global temperature increase and how it would affect fitness and performance-related traits in ectothermic organisms. We assessed the effects of acclimation to daily variance of temperature on thermal performance curves of swimming speed in helmeted water toad tadpoles (Calyptocephalella gayi). Acclimation treatments were 20 °C ± 0.1 SD (constant) and 20 °C ± 1.5 SD (fluctuating). We draw two key findings: first, tadpoles exposed to daily temperature fluctuation had reduced maximal performance (Zmax), and flattened thermal performance curves, thus supporting the “vertical shift or faster-slower” hypothesis, and suggesting that overall swimming performance would be lower through an examination of temperatures under more realistic and ecologically-relevant fluctuating regimens; second, there was significant interindividual variation in performance traits by means of significant repeatability estimates.Our present results suggest that the widespread use of constant acclimation temperatures in laboratory experiments to estimate thermal performance curves (TPCs) may lead to an overestimation of actual organismal performance. We encourage the use of temperature fluctuation acclimation treatments to better understand the variability of physiological traits, which predict ecological and evolutionary responses to global change.  相似文献   

4.
Thermal plasticity can help organisms coping with climate change. In this study, we analyse how laboratory populations of the ectotherm species Drosophila subobscura, originally from two distinct latitudes and evolving for several generations in a stable thermal environment (18 °C), respond plastically to new thermal challenges. We measured adult performance (fecundity traits as a fitness proxy) of the experimental populations when exposed to five thermal regimes, three with the same temperature during development and adulthood (15-15 °C, 18-18 °C, 25-25 °C), and two where flies developed at 18 °C and were exposed, during adulthood, to either 15 °C or 25 °C. Here, we test whether (1) flies undergo stress at the two more extreme temperatures; (2) development at a given temperature enhances adult performance at such temperature (i.e. acclimation), and (3) populations with different biogeographical history show plasticity differences. Our findings show (1) an optimal performance at 18 °C only if flies were subjected to the same temperature as juveniles and adults; (2) the occurrence of developmental acclimation at lower temperatures; (3) detrimental effects of higher developmental temperature on adult performance; and (4) a minor impact of historical background on thermal response. Our study indicates that thermal plasticity during development may have a limited role in helping adults cope with warmer - though not colder - temperatures, with a potential negative impact on population persistence under climate change. It also emphasizes the importance of analysing the impact of temperature on all stages of the life cycle to better characterize the thermal limits.  相似文献   

5.
The American lobster is a poikilotherm that inhabits a marine environment where temperature varies over a 25°C range and depends on the winds, the tides and the seasons. To determine how cardiac performance depends on the water temperature to which the lobsters are acclimated we measured lobster heart rates in vivo. The upper limit for cardiac function in lobsters acclimated to 20°C is approximately 29°C, 5°C warmer than that measured in lobsters acclimated to 4°C. Warm acclimation also slows the lobster heart rate within the temperature range from 4 to 12°C. Both effects are apparent after relatively short periods of warm acclimation (3–14 days). However, warm acclimation impairs cardiac function at cold temperatures: following several hours exposure to frigid (<5°C) temperatures heart rates become slow and arrhythmic in warm acclimated, but not cold acclimated, lobsters. Thus, acclimation temperature determines the thermal limits for cardiac function at both extremes of the 25°C temperature range lobsters inhabit in the wild. These observations suggest that regulation of cardiac thermal tolerance by the prevailing environmental temperature protects against the possibility of cardiac failure due to thermal stress.  相似文献   

6.
A large number of physiological acclimation studies assume that flexibility in a certain trait is both adaptive and functionally important for organisms in their natural environment; however, it is not clear how an organism’s capacity for temperature acclimation translates to the seasonal acclimatization that these organisms must accomplish. To elucidate this relationship, we measured BMR and TEWL rates in both field-acclimatized and laboratory-acclimated adult rufous-collared sparrows (Zonotrichia capensis). Measurements in field-acclimatized birds were taken during the winter and summer seasons; in the laboratory-acclimated birds, we took our measurements following 4 weeks at either 15 or 30°C. Although BMR and TEWL rates did not differ between winter and summer in the field-acclimatized birds, laboratory-acclimated birds exposed to 15°C exhibited both a higher BMR and TEWL rate when compared to the birds acclimated to 30°C and the field-acclimatized birds. Because organ masses seem to be similar between field and cold-acclimated birds whereas BMR is higher in cold-acclimated birds, the variability in BMR cannot be explained completely by adjustments in organ masses. Our findings suggest that, although rufous-collared sparrows can exhibit thermal acclimation of physiological traits, sparrows do not use this capacity to cope with minor to moderate fluctuations in environmental conditions. Our data support the hypothesis that physiological flexibility in energetic traits is a common feature of avian metabolism.  相似文献   

7.
Insect thermal tolerance shows a range of responses to thermal history depending on the duration and severity of exposure. However, few studies have investigated these effects under relatively modest temperature variation or the interactions between short‐ and longer‐term exposures. In the present study, using a full‐factorial design, 1 week‐long acclimation responses of critical thermal minimum (CTmin) and critical thermal maximum (CTmax) to temperatures of 20, 25 and 30 °C are investigated, as well as their interactions with short‐term (2 h) sub‐lethal temperature exposures to these same conditions (20, 25 and 30 °C), in two fruit fly species Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch from South Africa. Flies generally improve heat tolerance with high temperature acclimation and resist low temperatures better after acclimation to cooler conditions. However, in several cases, significant interaction effects are evident for CTmax and CTmin between short‐ and long‐term temperature treatments. Furthermore, to better comprehend the flies' responses to natural microclimate conditions, the effects of variation in heating and cooling rates on CTmax and CTmin are explored. Slower heating rates result in higher CTmax, whereas slower cooling rates elicit lower CTmin, although more variation is detected in CTmin than in CTmax (approximately 1.2 versus 0.5 °C). Critical thermal limits estimated under conditions that most closely approximate natural diurnal temperature fluctuations (rate: 0.06 °C min?1) indicate a CTmax of approximately 42 °C and a CTmin of approximately 6 °C for these species in the wild, although some variation between these species has been found previously in CTmax. In conclusion, the results suggest critical thermal limits of adult fruit flies are moderated by temperature variation at both short and long time scales and may comprise both reversible and irreversible components.  相似文献   

8.
Eighth instar female house crickets at 35°C developed faster, gained slightly more wet weight, and consumed less food, water, and oxygen than at 25°C. The duration of the 8th stadium at 25°C was 13 days (undisturbed), but was 14 days when disturbed by daily weighing. The duration of the 8th stadium at 30°C was 8 days and at 35°C was 6 days. During the first half of the 8th stadium at 25, 30, and 35°C, there was a high rate of food and water consumption resulting in statistically equal maximum dry weight achievement (124 mg). Respiratory quotients greater than one during this time indicated the conversion of ingested carbohydrate to fat. During the latter half of the 8th stadium, food and water consumption declined and the crickets lost weight. The period of weight loss was proportionally much longer at 25°C than at 30 or 35°C. Respiratory quotients lower than 1.0 during the latter half of the 8th stadium at 30 and 35°C indicated the metabolism of stored lipids. The respiratory quotient at 25°C never fell below 1.0, possibly because some food remained in the gut. The absorption efficiency was not influenced by temperature (25–35°C). Though the caloric content of the faeces was lower at 25°C than at 30 or 35°C, which correlated to the much longer time for food passage at 25°C than at 35°C, the difference in total calories egested was insufficient to alter the absorption efficiency. A longer period of reduced feeding and greater dry weight loss during the latter half of the 8th stadium at 25°C resulted in a lower metabolic efficiency at 25°C than at 30 or 35°C. Eighth instar crickets in response to a step-function transfer from 30°C–25 or 35°C showed an immediate (<1 hr) and complete metabolic adjustment which was not affected by the temperature history during the 7th stadium. House crickets did not exhibit temperature acclimation in the range 20–40°C, the metabolic rate being determined by ambient temperature. The Q10 for oxygen consumption in the range 20–40°C was about 2.  相似文献   

9.
1.  Thermal acclimation is one of the basic strategies by which organisms cope with thermal heterogeneity of the environment. Under predictable variation in environmental temperatures, theory predicts that selection favours acclimation of thermal performance curves over fixed phenotypes.
2.  We examined the influence of diel fluctuations in developmental temperatures on the thermal sensitivity of the maximal swimming capacity in larvae of the alpine newt, Triturus alpestris .
3.  We incubated newt eggs under three thermal regimes with varying daily amplitudes (1, 5 and 9 °C) and similar means (17·6–17·9 °C), and accordingly we measured the swimming speed of hatched larvae at three experimental temperatures (12, 17 and 22 °C), which they would normally experience in their natural habitat.
4.  Embryonic development under low and middle temperature fluctuations produced larvae with similar swimming speeds across experimental temperatures. In contrast, the most fluctuating regime induced development of phenotypes, which at 12 °C swam faster than larvae developed under moderate diel fluctuations.
5.  Our results provide evidence that diel temperature fluctuations induce acclimation of thermal dependence of locomotor performance. In ectotherms experiencing diel cycles in environmental temperatures, this plastic response may act as an important pacemaker in the evolution of thermal sensitivity.  相似文献   

10.
The thermal environment can induce substantial variation in important life-history traits. Experimental manipulation of the thermal environment can help researchers determine the contribution of this factor to phenotypic variation in life-history traits. During the reproductive season, we kept female northern grass lizards, Takydromus septentrionalis (Lacertidae), in three temperature-controlled rooms (25, 28 and 32 °C) to measure the effect of the maternal thermal environment on reproductive traits. Maternal thermal environment remarkably affected reproductive frequency and thereby seasonal reproductive output, but had little effect on reproductive traits per clutch or hatchling traits. Females kept at 32 °C produced more clutches and thus had shorter clutch intervals than females from 28 to 25 °C. Clutch size, clutch mass, relative clutch mass, egg size and hatchling traits did not vary among the three treatments. The eggs produced by the females were incubated at 27 °C and the traits of hatchlings were measured. The result that egg (offspring) size was independent of maternal thermal environments is consistent with the prediction of the optimal egg size (offspring) theory. The eggs produced by low temperature females (28 and 25 °C) took longer time to complete their post-oviposition development than did eggs produced by high temperature females (32 °C). This suggests that the eggs from low temperatures might have been laid when the embryos were at relatively early stages. Therefore, maternal thermal environment prior to oviposition could affect post-oviposition development in T. septentrionalis.  相似文献   

11.
Organisms inhabiting the intertidal zone have been used to study natural ecophysiological responses and adaptations to thermal stress because these organisms are routinely exposed to high‐temperature conditions for hours at a time. While intertidal organisms may be inherently better at withstanding temperature stress due to regular exposure and acclimation, they could be more vulnerable to temperature stress, already living near the edge of their thermal limits. Strong gradients in thermal stress across the intertidal zone present an opportunity to test whether thermal tolerance is a plastic or canalized trait in intertidal organisms. Here, we studied the intertidal pool‐dwelling calcified alga, Ellisolandia elongata, under near‐future temperature regimes, and the dependence of its thermal acclimatization response on environmental history. Two timescales of environmental history were tested during this experiment. The intertidal pool of origin was representative of long‐term environmental history over the alga's life (including settlement and development), while the pool it was transplanted into accounted for recent environmental history (acclimation over many months). Unexpectedly, neither long‐term nor short‐term environmental history, nor ambient conditions, affected photosynthetic rates in E. elongata. Individuals were plastic in their photosynthetic response to laboratory temperature treatments (mean 13.2°C, 15.7°C, and 17.7°C). Further, replicate ramets from the same individual were not always consistent in their photosynthetic performance from one experimental time point to another or between treatments and exhibited no clear trend in variability over experimental time. High variability in climate change responses between individuals may indicate the potential for resilience to future conditions and, thus, may play a compensatory role at the population or species level over time.  相似文献   

12.
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2–3 °C above long‐term annual means can compromise critical physiological processes. We examined the capacity of a model species – a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end‐of‐century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long‐term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species.  相似文献   

13.
Acclimation refers to reversible, nongenetic changes in phenotype that are induced by specific environmental conditions. Acclimation is generally assumed to improve function in the environment that induces it (the beneficial acclimation hypothesis). In this study, we experimentally tested this assumption by measuring relative fitness of the bacterium Escherichia coli acclimated to different thermal environments. The beneficial acclimation hypothesis predicts that bacteria acclimated to the temperature of competition should have greater fitness than do bacteria acclimated to any other temperature. The benefit predicted by the hypothesis was found in only seven of 12 comparisons; in the other comparisons, either no statistically demonstrable benefit was observed or a detrimental effect of acclimation was demonstrated. For example, in a lineage evolutionarily adapted to 37°C, bacteria acclimated to 37°C have a higher fitness at 32°C than do bacteria acclimated to 32°C, a result exactly contrary to prediction; acclimation to 27°C or 40°C prior to competition at those temperatures confers no benefit over 37°C acclimated forms. Consequently, the beneficial acclimation hypothesis must be rejected as a general prediction of the inevitable result of phenotypic adjustments associated with new environments. However, the hypothesis is supported in many instances when the acclimation and competition temperatures coincide with the historical temperature at which the bacterial populations have evolved. For example, when the evolutionary temperature of the population was 37°C, bacteria acclimated to 37°C had superior fitness at 37°C to those acclimated to 32°C; similarly, bacteria evolutionarily adapted to 32°C had a higher fitness during competition at 32°C than they did when acclimated to 37°C. The more surprising results are that when the bacteria are acclimated to their historical evolutionary temperature, they are frequently competitively superior even at other temperatures. For example, bacteria that have evolved at either 20°C or 32°C and are acclimated to their respective evolutionary temperatures have a greater fitness at 37°C than when they are acclimated to 37°C. Thus, acclimation to evolutionary temperature may, as a correlated consequence, enhance performance not only in the evolutionary environment, but also in a variety of other thermal environments.  相似文献   

14.
We investigated the heat tolerance of adults of three replicated lines of Drosophila melanogaster that have been evolving independently by laboratory natural selection for 15 yr at “nonextreme” temperatures (18°C, 25°C, or 28°C). These lines are known to have diverged in body size and in the thermal dependence of several life-history traits. Here we show that they differ also in tolerance of extreme high temperature as well as in induced thermotolerance (“heat hardening”). For example, the 28°C flies had the highest probability of surviving a heat shock, whereas the 18°C flies generally had the lowest probability. A short heat pretreatment increased the heat tolerance of the 18°C and 25°C lines, and the threshold temperature necessary to induce thermotolerance was lower for the 18°C line than for the 25°C line. However, neither heat pretreatment nor acclimation to different temperatures influenced heat tolerance of the 28°C line, suggesting the loss of capacity for induced thermotolerance and for acclimation. Thus, patterns of tolerance of extreme heat, of acclimation, and of induced thermotolerance have evolved as correlated responses to natural selection at nonextreme temperatures. A genetic analysis of heat tolerance of a representative replicate population each from the 18°C and 28°C lines indicates that chromosomes 1, 2, and 3 have significant effects on heat tolerance. However, the cytoplasm has little influence, contrary to findings in an earlier study of other stocks that had been evolving for 7 yr at 14°C versus 25°C. Because genes for heat stress proteins (hsps) are concentrated on chromosome 3, the potential role of hsps in the heat tolerance and of induced thermotolerance in these naturally selected lines is currently unclear. In any case, species of Drosophila possess considerable genetic variation in thermal sensitivity and thus have the potential to evolve rapidly in response to climate change; but predicting that response may be difficult.  相似文献   

15.
To evaluate developmental plasticity in thermal tolerance of zebrafish Danio rerio , common-stock zebrafish were reared from fertilization to adult in the five thermal regimes (two stable, two with constant diel cycles and one stochastic diel cycle) and their thermal tolerance at three acclimation temperatures compared. The energetic cost of developing in the five regimes was assessed by measuring body size over time. While acclimation accounted for most of the variability in thermal tolerance, there were also significant differences among fish reared in the different regimes, regardless of acclimation. Fish reared in more variable environments (as much as ±6° C diel cycle) had a greater tolerance than those from non-variable environments at the same mean temperature. Fish from the more variable environments were also significantly smaller than those from non-variable environments. These results indicate that the thermal history of individual zebrafish induces irreversible changes to the thermal tolerance of adults.  相似文献   

16.
Habitats vary in temperature both spatially and temporally. Variation in thermal habitat introduces challenges to organisms and may reduce fitness unless organisms can physiologically adjust to such changes. Theory predicts that thermal variability should influence the capacity for acclimation such that increased variation should favor a reduction in the thermal sensitivity of physiological traits. In this study, we investigated acclimation to constant and variable conditions in populations of the salamander Desmognathus brimleyorum from the Ouachita Mountains of Arkansas, USA. We exposed salamanders to constant and variable temperature regimes for 8 weeks in the laboratory. We then tested salamanders for acclimation of thermal tolerance, and the thermal sensitivities of swimming performance and standard metabolic rate. Our results indicate limited capacity for thermal acclimation to constant and variable conditions in D. brimleyorum. Instead, variation in physiological traits is dominated by differences among populations. Population differences do not appear to be correlated with observed variation in the thermal conditions of the streams, but are likely a consequence of structural and ecological differences. Due to the mixed support for theoretical predictions for acclimation to alternative environments, further consideration should be given to revising and expanding current theoretical models.  相似文献   

17.
We investigated the effects of developmental and parental temperatures on several physiological and morphological traits of adult Drosophila melanogaster. Flies for the parental generation were raised at either low or moderate temperature (18°C or 25°C) and then mated in the four possible sex-by-parental temperature crosses. Their offspring were raised at either 18°C or 25°C and then scored as adults for morphological (dry body mass, wing size, and abdominal melanization [females only]), physiological (knock-down temperature, and thermal dependence of walking speed), and life history (egg size) traits. The experiment was replicated, and the factorial design allows us to determine whether and how paternal, maternal, and developmental temperatures (as well as offspring sex) influence the various traits. Sex and developmental temperature had major effects on all traits. Females had larger bodies and wings, higher knock-down temperatures, and slower speeds (but similar shaped performance curves) than males. Development at 25°C (versus at 18°C) increased knock-down temperature, increased maximal speed and thermal performance breadth, decreased the optimal temperature for walking, decreased body mass and wing size, reduced abdominal melanization, and reduced egg size. Parental temperatures influenced a few traits, but the effects were generally small relative to those of sex or developmental temperature. Flies whose mother had been raised at 25°C (versus at 18°C) had slightly higher knock-down temperature and smaller body mass. Flies whose father had been raised at 25°C had relatively longer wings. The effects of paternal, maternal, and developmental temperatures sometimes differed in direction. The existence of significant within- and between-generation effects suggests that comparative studies need to standardize thermal environments for at least two generations, that attempts to estimate “field” heritabilities may be unreliable for some traits, and that predictions of short-term evolutionary responses to selection will be difficult.  相似文献   

18.
In vitro-grown saskatoon berry (Amelanchier alnifolia Nutt.) plantlets were exposed to various hormonal treatments, dormancy-inducing and cold acclimation conditions to determine if this in vitro system would be viable for dormancy/hardiness studies in woody plants. Low temperature induced significant hardiness levels in plantlets to ?27°C after 6 weeks at 4°C but did not approach liquid nitrogen levels of fully hardened, field-grown buds. Control plantlets were consistently killed at ?5°C throughout this period. Significant hardiness was attained under both short and long day/low temperature conditions; however, hardiness was reduced under continuous light or dark treatments. A pre-exposure to the typical short photoperiod regime of woody plants did not significantly increase the rate of acclimation in these plantlets. The presence/absence of phytohormones in the media have a pronounced influence on the ability of plantlets to cold acclimate. Hormone-free media increased hardiness to ?10.5°C after 2 weeks in treatment. Addition of abscisic acid (ABA) increased cold hardiness levels (?12°C) while addition of benzylaminopurine (BAP) to this hormone-free media decreased hardiness to ?5.3°C. A combination of BAP and ABA treatments produced LT50 values intermediate between individual applications of either hormone. Conversely, α-naphthaleneacetic acid (NAA) could not counteract the ABA-induced hardiness. ABA treatments alone were not able to harden plantlets to the extent attained under low temperature acclimation conditions. Further, ABA could not maintain the hardiness levels of cold-acclimating treatments and plantlets de-acclimated to ?9°C in BAP + ABA media. Subculturing in itself significantly elevated cold hardiness in plantlets to ?9°C on BAP + NAA media within 3 days after subculture and thereafter plantlets dehardened to ?5°C. While tissue culture has value in specific cases, caution should be taken when using tissue-cultured plantlets as a system to evaluate environmental regulation of cold acclimation in woody plants, in part, due to the influence of phytohormones in the media.  相似文献   

19.
The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号