首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The traditional method for determining compartmental analysis parameters relies on a visual selection of data points to be used for regression of data from each cellular compartment. This method is appropriate when the compartments are kinetically discrete and are easily discernible. However, where treatment effects on compartment parameters are being evaluated, a more objective method for determining initial parameters is desirable.

Three methods were examined for determining initial isotopic contents and half-times of 86Rb elution from cellular compartments using theoretical data with known parameters. Experimental data from roots of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) and barley (Hordeum vulgare L.) intact seedlings were also used. The three methods were a visually assisted, linear regression on data of semilog plot of isotope elution versus time, a microcomputer-assisted, linear regression on semilog plot where maximization of the square of the correlation coefficient (r2) was the criterion to determine data points needed for each regression and a mainframe computer-assisted, direct nonlinear regression on elution data using a model of the sum of three exponential decay functions. The visual method resulted in the least accurate estimates of compartmental analysis parameters. The microcomputer-assisted and nonlinear regression methods calculated the parameters equally well.

  相似文献   

2.
Early events of mycorrhizal and nonmycorrhizal fungal colonization in newly-emerging roots of mature apple (Malus domestica Borkh) trees were characterized to determine the relationship of these events to fine root growth rate and development. New roots were traced on root windows to measure growth and then collected and stained to quantify microscopically the presence of mycorrhizal and nonmycorrhizal fungal structures. Most new roots were colonized by either mycorrhizal or nonmycorrhizal fungi but none less 25 days old were ever internally colonized by both. Compared to nonmycorrhizal colonization, mycorrhizal colonization was associated with faster growing roots and roots that grew for a longer duration, leading to longer roots. While either type of fungi was observed in roots as soon as 3 days after root emergence, intraradical colonization by mycorrhizal fungi was generally faster (peaking at 7 to 15 days) than that by nonmycorrhizal fungi and often occurred more frequently in younger roots. Only 15 to 35% of the roots had no fungal colonization by 30 days after emergence. This study provides the first detailed examination of the early daily events of mycorrhizal and nonmycorrhizal fungal colonization in newly emerging roots under field conditions. We observed marked discrimination of roots between mycorrhizal and nonmycorrhizal fungi and provide evidence that mycorrhizal fungi may select for faster growing roots and possibly influence the duration of root growth by non-nutritional means.  相似文献   

3.
31P-Nuclear Magnetic Resonance (NMR) was used to assess phosphate distribution in ectomycorrhizal and nonmycorrhizal roots of Castanea sativa Mill. as well as in the mycorrhizal fungus Pisolithus tinctorius in order to gain insight into phosphate trafficking in these systems. The fungus P. tinctorius accumulated high levels of polyphosphates during the rapid phase of growth. Mycorrhizal and nonmycorrhizal roots accumulate orthophosphate. Only mycorrhizal roots presented polyphosphates. The content in polyphosphates increased along the 3 months of mycorrhiza formation. In mycorrhizal roots of plants cultured under axenic conditions, the orthophosphate pool decreased along the culture time. In nonmycorrhizal roots the decrease in the orthophosphate content was less pronounced. The level of orthophosphate in mycorrhizal roots was significantly lower than in nonmycorrhizal ones, which indicates that this system relies upon the fungal polyphosphates as a major source of phosphate. Received: 28 July 1998 / Accepted: 21 October 1998  相似文献   

4.
The relative reflectance spectra for control and treated (surface wiped) current-year foliage of Douglas fir, and Sitka, Colorado, and Blue spruce (Pseudotsuga menziesii [Mirb.] Franco, Picea sitchensis [Bong.] Carr., Picea pungens Engelm., and Picea pungens Engelm. var. hoopsii, respectively) were obtained from 220 to 700 nm. The green color of the control foliage of both Douglas fir and Sitka spruce was unaffected by the treatment whereas the blue-green and blue-white foliage of control Colorado and Blue spruce, respectively, became “green” as a result of the wiping. The relative reflectance curves for all green foliage, including the treated Colorado and Blue spruce, were all very similar with a peak in the green (540-560 nm), minima in the red (660-680 nm) and blue (450-500 nm), and very low reflectivities in the ultraviolet (λ < 400 nm). In contrast, the control foliage for Colorado and Blue spruce both showed a generally higher relative reflectance over most of the visible spectrum (400-700 nm) with a marked increase in the blue region (400-500 nm). At wavelengths below 420 nm, their relative reflectances increased sharply with decreasing wavelength, the reflectance at 220 nm for Blue spruce being over four times that at 540 nm.  相似文献   

5.
Swiss needle cast (SNC) is a fungal disease of Douglas‐fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree‐rings of Douglas‐fir and a non‐susceptible reference species (western hemlock, Tsuga heterophylla) to evaluate their use as proxies for variation in past SNC infection, particularly in relation to potential explanatory climate factors. We sampled trees from an Oregon site where a fungicide trial took place from 1996 to 2000, which enabled the comparison of stable isotope values between trees with and without disease. Carbon stable isotope discrimination (Δ13C) of treated Douglas‐fir tree‐rings was greater than that of untreated Douglas‐fir tree‐rings during the fungicide treatment period. Both annual growth and tree‐ring Δ13C increased with treatment such that treated Douglas‐fir had values similar to co‐occurring western hemlock during the treatment period. There was no difference in the tree‐ring oxygen stable isotope ratio between treated and untreated Douglas‐fir. Tree‐ring Δ13C of diseased Douglas‐fir was negatively correlated with relative humidity during the two previous summers, consistent with increased leaf colonization by SNC under high humidity conditions that leads to greater disease severity in following years.  相似文献   

6.
Biomass allocation in 6-month-old ectomycorrhizal Douglas fir seedlings was compared to that in nonmycorrhizal seedlings of the same age, nutrient status and total biomass. Seedlings colonized by Rhizopogon vinicolor had the same distribution of biomass between roots, stems and needles, but only 56% of the total length of roots (including mycorrhizal branches) compared to nonmycorrhizal seedlings. Laccaria laccata had no effect on distribution of biomass or root length of seedlings. The results for Rhizopogon provide direct evidence that the process of ectomycorrhizal colonization can significantly affect plant biomass allocation by one or more mechanisms not directly related to altered nutrition or overall plant size.  相似文献   

7.
Translocation of 14C-photosynthates to mycorrhizal (+ +), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. × Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to 14 CO2 for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (+ +) versus (00) plants. In low nutrient media, roots of (0+) and (+ +) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (+ +) plants. Root systems of (+ +) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the 14C-photosynthate to the mycorrhiza as did (0+) root systems. This indicates there is an optimal level of mycorrhizal colonization above which the plant receives no enhanced P uptake yet continues to partition photosynthates to metabolism of the mycorrhiza.  相似文献   

8.
We examined the ectomycorrhizal (ECM) fungal community across a bog-forest ecotone in southeastern Alaska. The bog and edge were both characterized by poorly drained Histosols and a continuous layer of Sphagnum species, ericaceous shrubs, Carex species, and shore pine [Pinus contorta Dougl. ex Loud. var. contorta]. The forest had better-drained Inceptisols and Spodosols, a tree community comprised of western hemlock [Tsuga heterophylla (Raf.) Sarg.], yellow cedar (Thuja plicata Donn ex D. Don.), Sitka spruce [Picea sitchensis (Bong.) Carr.] and shore pine, and an understorey of ericaceous shrubs and herbs. ECM root tip density (tips cm–3 soil) was significantly greater in the forest than the edge or bog and ECM colonization was significantly different in all three plant communities. The below ground ECM fungal taxa were analyzed using molecular techniques (PCR-RFLP and DNA sequencing). Three ECM fungal taxa, Suillus tomentosus (Kauffman) Singer, Cenococcum geophilum Fr.:Fr, and a Russula species, differed in relative frequency, yet were among the four most frequent in all three plant communities. Although differences in ECM fungal richness were observed across plant communities, unequal sampling of ECM roots due to root density and colonization differences confounded richness comparisons. Using resampling procedures for creating taxon-accumulation curves as a function of sampled ECM roots revealed similarities in cumulative ECM fungal taxa richness across the ecotone.  相似文献   

9.
Data are presented for what we believe to be the first assessment of the elemental foliar status of red spruce (Picea rubens Sarg.) and Fraser fir [Abies fraseri (Pursh.) Poir.] trees in the high elevation forests of the southern Appalachian mountans. Needle samples were collected from September–November 1984. Needles were separated according to flush year for the 1984, 1983 and 1982 growing seasons. Each sample was analyzed without washing for 28 macro- and micronutrients and trace elements. Significant differences in foliar concentrations were observed between flush year for N, P, Ca, Mg, K, Cl, Cu, Ce, Th, Cs, Pb, Fe, La and Rb for Fraser fir (n=41), and P, Ca, K, Cl, Cu, Pb and Rb for red spruce (n=30). Nitrogen concentrations ranged from 11.2–20.2 mg g?1 for Fraser fir, and 8.7–15.9 mg g?1 for red pruce. The mean concentration of Ca observed in red spruce needles (1.4 mg g?1 1984 growing season) fell at the low extreme of reported values for non-necrotic red spruce foliage in the northeastern United States (1.2–11.6 mg g?1). The mean concentration of Ca in Fraser fir foliage (3.4 mg g?1, 1984 growing season) was also lower than reported values for eastern fir, but not to the extent demonstrated for red spruce. Fraser fir needles had higher concentrations of Al than red spruce (310vs 91 mg kg?1, respectively, 1984 growing season), but both values are higher than those reported for spruce or fir from the northeastern United States. Calcium:aluminum ratios in current foliage are the lowest yet reported for the eastern spruce/fir forest type, suggesting that Al toxicity and/or Ca deficiency may be important stresses in these stands. Comparison of Pb concentrations with those of other rare-earth elements known to be associated with dust on needle surfaces (Ce, La, Sc, Sm, and Th) suggested that a substantial portion of the Pb found was due to particulates on the needle surfaces. The significance of these results to the observed forest decline syndrome in high elevation forests of the eastern United States is also discussed.  相似文献   

10.
The compartmental analysis method was used to estimate the K+ and Cl fluxes for cells of excised roots of Zea mays L. cv. Golden Bantam. When the measured fluxes are compared to those calculated with the Ussing-Teorell flux-ratio equation, an active inward transport of Cl across the plasmalemma is indicated; the plasmalemma K+ fluxes are not far different from those predicted for passive diffusion, although an active inward transport cannot be precluded. Whether fluxes across the tonoplast are active or passive depends upon the vacuolar potential which is unknown. Assuming no electropotential gradient, the tracer flux ratios are fairly close to those predicted for passive movement. However, if the vacuole is positive by about 10 millivolts relative to the cytoplasm, the data suggest active inward transport for K+ and outward transport for Cl.  相似文献   

11.
Norway spruce [Picea abies (L.) Karst.] seedlings, nonmycorrhizal of mycorrhizal with Laccaria laccata or Paxillus involutus were grown in a quartz sand-nutrient solution system for 6 months and then treated with 5 M Pb for 4 days. Element contents of cortex cell wall of young, medium and old short roots were determined by X-ray microanalysis of longitudinal thin sections. The Pb content was influenced neither by age nor by the distance from the root tip (up to 1.7 mm) but was significantly lower in the P. involutus mycorrhizae than in the L. laccata mycorrhizae or in nonmycorrhizal short roots. In the P. involutus mycorrhizae, the P content of the cortex cell walls was twice as high in young mycorrhizae than in old mycorrhizae. In the nonmycorrhizal short roots and the L. laccata mycorrhizae, P content was influenced neither by age nor by distance from the root tip. The Ca and Fe contents of the cortex cell walls increased with age in the nonmycorrhizal short roots and the mycorrhizae. It is concluded that the element content of the cortex cell walls of short roots is strongly influenced by age, while the distance from the root tip seems to be of minor importance.  相似文献   

12.
We examined the influence of calcium (Ca) and aluminum (Al) nutrition on the foliar physiology of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L.) Mill.] in northern New England, USA. At the Hubbard Brook Experimental Forest (NH, USA), spruce and fir saplings were sampled from control, Al-, and Ca-supplemented plots at a long-established nutrient perturbation (NuPert) study in fall 2008. Measurements included cation concentrations (roots and foliage), dark-adapted chlorophyll fluorescence (F v/F m), soluble sugar concentrations, and ascorbate peroxidase (APX) and glutathione reductase (GR) activity in current-year foliage. Additional untreated saplings were sampled from base-rich Sleepers River (VT) and base-poor Jeffers Brook (NH) for F v/F m and foliar nutrient concentrations. At NuPert, there were significantly greater Ca concentrations and Ca:Al ratios in roots from the Ca end vs. the Al end of the Al-control-Ca addition gradient. There were also trends toward greater foliar Ca and Ca:Al ratios and lower Al concentrations across the treatment gradient at NuPert and for foliage at Sleepers River vs. Jeffers Brook. At NuPert, F v/F m and APX activity increased across the treatment gradient, and red spruce was higher in these measures than balsam fir. These patterns were also observed when Jeffers Brook and Sleepers River were compared. Increased Ca availability appeared to enhance the ability of red spruce and balsam fir to repair oxidative stress damage, including photooxidation. Our findings support work indicating a greater contemporary level of stress for balsam fir relative to red spruce, which is surprising considering the well-documented regional decline of spruce.  相似文献   

13.
Uptake and fluxes of sodium, rubidium (instead of potassium), and chloride ions in segments of 3-week-old sugar beet roots were studied. Radioactive 22Na, 86Rb and 36Cl were used for labelling of the ions. Compartmental analysis was used to obtain the fluxes and concentrations in the cell compartments. The passive or active character of the movements was examined by the Ussing-Teorell equation and compared with electropotential measurements. In the case of sodium, net flux was in the outward direction over both tonoplast and plasmalemma, but the active components were directed away from the cytoplasm. Potassium was close to equilibrium. Chloride was actively transported from the medium to the cytoplasm, and — contrary to observations in other systems — from the vacuole to the cytoplasm. This unusual situation may be caused by a loss of sugar, both by lowering the energy supply and by formation of organic acids.  相似文献   

14.
The mechanism responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation in sudangrass (Sorghum vulgare Pers.) was investigated in a phosphorus-deficient sandy soil (0.5 micrograms phosphorus per gram soil) amended with increasing levels of phosphorus as superphosphate (0, 28, 56, 228 micrograms per gram soil). The root phosphorus content of 4-week-old plants was correlated with the amount of phosphorus added to the soil. Root exudation of amino acids and reducing sugars was greater for plants grown in phosphorus-deficient soil than for those grown in the phosphorus-treated soils. The increase in exudation corresponded with changes in membrane permeability of phosphorus-deficient roots, as measured by K+ (86Rb) efflux, rather than with changes in root content of reducing sugars and amino acids. The roots of phosphorus-deficient plants inoculated at 4 weeks with Glomus fasciculatus were 88% infected after 9 weeks as compared to less than 25% infection in phosphorus-sufficient roots; these differences were correlated with root exudation at the time of inoculation. For plants grown in phosphorus-deficient soil, infection by vesicular-arbuscular mycorrhizae increased root phosphorus which resulted in a decrease in root membrane permeability and exudation compared to nonmycorrhizal plants. It is proposed that, under low phosphorus nutrition, increased root membrane permeability leads to net loss of metabolites at sufficient levels to sustain the germination and growth of the mycorrhizal fungus during pre- and postinfection. Subsequently, mycorrhizal infection leads to improvement of root phosphorus nutrition and a reduction in membrane-mediated loss of root metabolites.  相似文献   

15.
Mycorrhizal fungi and nonhydraulic root signals of soil drying   总被引:4,自引:1,他引:3       下载免费PDF全文
Augé RM  Duan X 《Plant physiology》1991,97(2):821-824
We propose that mycorrhizal colonization of roots alters nonhydraulic root to shoot communication of soil drying. Split-root rose (Rosa hybrida L. cv Samantha) plants—one side of the root system colonized by Glomus intraradices Schenck & Smith, the other side nonmycorrhizal—displayed different stomatal conductances upon partial drying, depending upon whether mycorrhizal or nonmycorrhizal roots were dried. No differences in leaf water status were observed among control plants and those whose mycorrhizal or nonmycorrhizal roots were dried.  相似文献   

16.
Response of conifer seedlings to nitrate and ammonium sources of nitrogen   总被引:3,自引:0,他引:3  
Summary Differences in growth responses of Douglas fir, western hemlock, Sitka spruce, and white spruce to nitrate and ammonium N sources were examined in sand culture and artificial soil culture. Effects of the two forms of N on growth, needle area, and N uptake of three Douglas fir halb-sib progenies were examined in a second sand culture. Response of Douglas fir to the two forms of N was followed over two years in nursery soil of different pH levels. In sand culture 1 mean seedling dry weight of all species, except hemlock, was greatest when ammonium N and nitrate N were provided in equal amounts. In all species, except Sitka spruce, ammonium alone resulted in greater growth than nitrate alone. Use of ammonium N resulted in greater growth of all species, than was obtained with nitrate N, at pH values in the region 5.4 and 7.5 in artificial soil culture. Only Douglas fir showed substantial differences due to N source below pH 5. Growth of all species was greater at pH 5.4 than at 7.5 in each N source treatment. Growth of Douglas fir seedlings was greatest with ammonium N and least with nitrate N in sand culture 2. Supply of nitrate and ammonium in equal proportions resulted in intermediate growth. Leaf area/plant weight ratio was unaffected by N source. Analysis of nutrient solutions showed appreciable nitrification of ammonium N during the 7 days between solution changes. In the three greenhouse experiments, with little exception, increase in proportion of ammonium in N supply resulted in increase of seedling tissue N concentration. This effect was more pronounced in roots than shoots. Total N uptake by ammonium fed seedlings was about double the N uptake of nitrate fed seedlings in sand culture 2. Nursery grown Douglas fir seedlings showed greater growth response to ammonium sulphate than to calcium nitrate, and this appeared due entirely to form of N supply in the first year. A similar response in the second year was partly due to greater soil acidification by ammonium sulphate. Compared with calcium nitrate, ammonium sulphate increased N concentration of one-year old shoots, but this difference was not detected by foliar analysis of two-year old seedlings.  相似文献   

17.
We sought evidence for the occurrence and seasonal variation of indole-3-acetic acid (IAA) in shoots of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco).  相似文献   

18.
Webb WL 《Plant physiology》1977,60(2):320-322
The uptake of CO2 by Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings and the allocation of photoassimilated carbon among five vegetative tissues were closely related to seedling phenology. In May, newly flushing needles required 5.2% day−1 of photoassimilated carbon relative to needle tissue carbon. As these needles matured, this carbon requirement declined to 1.95% day−1 in August, to 0.94% day−1 in November, and to 0.76% day−1 in January. Other tissues of Douglas fir seedlings required different amounts of photoassimilated carbon for growth and metabolism. These data provide a strong link between daily CO2 uptake and the regulation of carbon allocation by seasonal phenology.  相似文献   

19.
One observation in a mycorrhizal check-list that Buddleja davidii is nonmycorrhizal has been perpetuated in subsequent citations and used in a number of analyses of mycorrhizal ecology and evolution. Direct observation of B. davidii from New Zealand and the UK shows extensive arbuscular mycorrhizal fungal structures inside B. davidii roots. The suggestion that B. davidii is nonmycorrhizal is therefore not supported. The use of mycorrhizal checklists for analysis of plant traits and evolution needs to be undertaken with care to ensure the validity of underlying data.  相似文献   

20.
Tissue-specific accumulation of phenylpropanoids was studied in mycorrhizas of the conifers, silver fir (Abies alba Mill.), Norway spruce [Picea abies (L.) Karst.], white pine (Pinus strobus L.), Scots pine (Pinus silvestris L.), and Douglas fir [Pseudotsuga menziesii (Mirbel) Franco], using high-performance liquid chromatography and histochemical methods. The compounds identified were soluble flavanols (catechin and epicatechin), proanthocyanidins (mainly dimeric catechins and/or epicatechins), stilbene glucosides (astringin and isorhapontin), one dihydroflavonol glucoside (taxifolin 3′-O-glucopyranoside), and a hydroxycinnamate derivative (unknown ferulate conjugate). In addition, a cell wall-bound hydroxycinnamate (ferulate) and a hydroxybenzaldehyde (vanillin) were analysed. Colonisation of the root by the fungal symbiont correlated with the distribution pattern of the above phenylpropanoids in mycorrhizas suggesting that these compounds play an essential role in restricting fungal growth. The levels of flavanols and cell wall-bound ferulate within the cortex were high in the apical part and decreased to the proximal side of the mycorrhizas. In both Douglas fir and silver fir, which allowed separation of inner and outer parts of the cortical tissues, a characteristic transversal distribution of these compounds was found: high levels in the inner non-colonised part of the cortex and low levels in the outer part where the Hartig net is formed. Restriction of fungal growth to the outer cortex may also be achieved by characteristic cell wall thickening of the inner cortex which exhibited flavanolic wall infusions in Douglas fir mycorrhizas. Long and short roots of conifers from natural stands showed similar distribution patterns of phenylpropanoids and cell wall thickening compared to the respective mycorrhizas. These results are discussed with respect to co-evolutionary adaptation of both symbiotic partners regarding root structure (anatomy) and root chemistry. Received: 25 May 1998 / Accepted: 6 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号