首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
2.
Human cardiac stem/progenitor cells and their potential for repair of heart injury are a current hot topic of research. CD117 has been used frequently as a marker for identification of stem/progenitor cells in the heart. However, cardiac mast cells, which are also CD117+, have not been excluded by credible means when selecting putative cardiac progenitors by using CD117 as a marker. We evaluated the relationship between CD117+ cells and mast cells in the left ventricle of human hearts (n=5 patients, ages 1 week–75 years) with the well-established mast cell markers tryptase, toluidine blue, and thionine. A large number (85–100%) of CD117+ cells in the human heart were specifically identified as mast cells. In addition, mast cells showed weak or moderate CD45 immunostaining signals. These results indicate that the majority of CD117+ cells in the heart are mast cells and that these cells are distinctly positive for CD45, although staining was weak or moderate. These results strongly suggest that the newly reported CD117+/CD45dim/moderate putative cardiac progenitor cells are mast cells. The significance of this observation in stem cell research of the heart is discussed. (J Histochem Cytochem 58:309–316, 2010)  相似文献   

3.
How Do Mesenchymal Stromal Cells Suppress T Cells?   总被引:1,自引:0,他引:1  
Keating A 《Cell Stem Cell》2008,2(2):106-108
Accumulating information indicates that mesenchymal stem or stromal cells (MSCs) are immunomodulatory, but the data to explain the observations are frequently conflicting. In this issue of Cell Stem Cell, Ren et al. (2008) provide evidence for a possible underlying mechanism of MSC-mediated T cell suppression. A perspective for considering these interesting observations is discussed.  相似文献   

4.
5.
6.
7.
Researchers have long debated whether new pancreatic β cells derive from stem cells or from pre-existing β cells. A new study in this issue of Cell Stem Cell (Smukler et al., 2011) suggests that both sides may be right.  相似文献   

8.
9.
Most mathematical models of collective cell spreading make the standard assumption that the cell diffusivity and cell proliferation rate are constants that do not vary across the cell population. Here we present a combined experimental and mathematical modeling study which aims to investigate how differences in the cell diffusivity and cell proliferation rate amongst a population of cells can impact the collective behavior of the population. We present data from a three-dimensional transwell migration assay that suggests that the cell diffusivity of some groups of cells within the population can be as much as three times higher than the cell diffusivity of other groups of cells within the population. Using this information, we explore the consequences of explicitly representing this variability in a mathematical model of a scratch assay where we treat the total population of cells as two, possibly distinct, subpopulations. Our results show that when we make the standard assumption that all cells within the population behave identically we observe the formation of moving fronts of cells where both subpopulations are well-mixed and indistinguishable. In contrast, when we consider the same system where the two subpopulations are distinct, we observe a very different outcome where the spreading population becomes spatially organized with the more motile subpopulation dominating at the leading edge while the less motile subpopulation is practically absent from the leading edge. These modeling predictions are consistent with previous experimental observations and suggest that standard mathematical approaches, where we treat the cell diffusivity and cell proliferation rate as constants, might not be appropriate.  相似文献   

10.
T cells have been classified as belonging to the Th1 or Th2 subsets according to the production of defining cytokines such as IFN-γ and IL-4. The discovery of the Th17 lineage and regulatory T cells shifted the simple concept of the Th1/Th2 balance into a 4-way mechanistic pathway of local and systemic immunological activity. Clinically, the blockage of cytokine signals or non-specific suppression of cytokine predominance by immunosuppressants is the first-line treatment for inflammatory T cell-mediated disorders. Cyclosporine A (CsA) and Tacrolimus (Tac) are commonly used immunosuppressants for the treatment of autoimmune disease, psoriasis, and atopic disorders. Many studies have shown that these compounds suppress the activation of the calcium-dependent phosphatase calcineurin, thereby inhibiting T-cell activation. Although CsA and Tac are frequently utilized, their pharmacological mechanisms have not yet been fully elucidated.In the present study, we focused on the effects of CsA and Tac on cytokine secretion from purified human memory CD4+T cells and the differentiation of naïve T cells into cytokine-producing memory T cells. CsA or Tac significantly inhibited IFN-γ, IL-4, and IL-17 production from memory T cells. These compounds also inhibited T cell differentiation into the Th1, Th2, and Th17 subsets, even when used at a low concentration. This study provided critical information regarding the clinical efficacies of CsA and Tac as immunosuppressants.  相似文献   

11.
12.
The nucleic acid contents of individual bacterial cells as determined with three different nucleic acid-specific fluorescent dyes (SYBR I, SYBR II, and SYTO 13) and flow cytometry were compared for different seawater samples. Similar fluorescence patterns were observed, and bacteria with high apparent nucleic acid contents (HNA) could be discriminated from bacteria with low nucleic acid contents (LNA). The best discrimination between HNA and LNA cells was found when cells were stained with SYBR II. Bacteria in different water samples collected from seven freshwater, brackish water, and seawater ecosystems were prelabeled with tritiated leucine and then stained with SYBR II. After labeling and staining, HNA, LNA, and total cells were sorted by flow cytometry, and the specific activity of each cellular category was determined from leucine incorporation rates. The HNA cells were responsible for most of the total bacterial production, and the specific activities of cells in the HNA population varied between samples by a factor of seven. We suggest that nucleic acid content alone can be a better indicator of the fraction of growing cells than total counts and that this approach should be combined with other fluorescent physiological probes to improve detection of the most active cells in aquatic systems.  相似文献   

13.
Why Do Plant Cells Divide?   总被引:11,自引:6,他引:5       下载免费PDF全文
Jacobs T 《The Plant cell》1997,9(7):1021-1029
  相似文献   

14.
Overview This review considers the “tween twixt and twain” of hair cell physiology, specifically the signaling elements and membrane conductances which underpin forward and reverse transduction at the input stage of hair cell function and neurotransmitter release at the output stage. Other sections of this review series outline the advances which have been made in understanding the molecular physiology of mechanoelectrical transduction and outer hair cell electromotility. Here we outline the contributions of a considerable array of ion channels and receptor signaling pathways that define the biophysical status of the sensory hair cells, contributing to hair cell development and subsequently defining the operational condition of the hair cells across the broad dynamic range of physiological function.  相似文献   

15.
In January 2010 two groups independently published the observation that the depletion of CD8+ cells in SIV-infected macaques had no detectable impact on the lifespan of productively infected cells. This unexpected observation led the authors to suggest that CD8+ T cells control SIV viraemia via non-lytic mechanisms. However, a number of alternative plausible explanations, compatible with a lytic model of CD8+ T cell control, were proposed. This left the field with no consensus on how to interpret these experiments and no clear indication whether CD8+ T cells operated primarily via a lytic or a non-lytic mechanism. The aim of this work was to investigate why CD8+ T cells do not appear to reduce the lifespan of SIV-infected cells in vivo.  相似文献   

16.
TNFα is persistently elevated in many injury and disease conditions. Previous reports of cytotoxicity of TNFα for oligodendrocytes and their progenitors suggest that the poor endogenous remyelination in patients with traumatic injury or multiple sclerosis may be due in part to persistent inflammation. Understanding the effects of inflammatory cytokines on potential cell therapy candidates is therefore important for evaluating the feasibility of their use. In this study, we assessed the effects of long term exposure to TNFα on viability, proliferation, migration and TNFα receptor expression of cultured rat olfactory ensheathing cells (OECs) and Schwann cells (SCs). Although OECs and SCs transplanted into the CNS produce similar myelinating phenotypes, and might be expected to have similar therapeutic uses, we report that they have very different sensitivities to TNFα. OECs exhibited positive proliferative responses to TNFα over a much broader range of concentrations than SCs. Low TNFα concentrations increased proliferation and migration of both OECs and SCs, but SC number declined in the presence of 100 ng/ml or higher concentrations of TNFα. In contrast, OECs exhibited enhanced proliferation even at high TNFα concentrations (up to 1 µg/ml) and showed no evidence of TNF cytotoxicity even at 4 weeks post-treatment. Furthermore, while both OECs and SCs expressed TNFαR1 and TNFαR2, TNFα receptor levels were downregulated in OECs after exposure to100 ng/ml TNFα for 5–7 days, but were either elevated or unchanged in SCs. These results imply that OECs may be a more suitable cell therapy candidate if transplanted into areas with persistent inflammation.  相似文献   

17.
DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.  相似文献   

18.
The co-culturing of insulinoma and islet-derived endothelial cell (iEC) lines results in the spontaneous formation of free-floating pseudoislets (PIs). We previously showed that iEC-induced PIs display improved insulin expression and secretion in response to glucose stimulation. This improvement was associated with a de novo deposition of extracellular matrix (ECM) proteins by iECs in and around the PIs. Here, iEC-induced PIs were used to study the expression and posttranslational modification of the ECM receptor integrin β1. A wide array of integrin β subunits was detected in βTC3 and NIT-1 insulinomas as well as in primary islets, with integrin β1 mRNA and protein detected in all three cell types. Interestingly, the formation of iEC-induced PIs altered the glycosylation patterns of integrin β1, resulting in a higher molecular weight form of the receptor. This form was found in native pancreas but was completely absent in monolayer β-cells. Fluorescence-activated cell sorting analysis of monolayers and PIs revealed a higher expression of integrin β1 in PIs. Antibody-mediated blocking of integrin β1 led to alterations in β-cell morphology, reduced insulin gene expression, and enhanced glucose secretion under baseline conditions. These results suggest that iEC-induced PI formation may alter integrin β1 expression and posttranslational modification by enhancing glycosylation, thereby providing a more physiological culture system for studying integrin-ECM interactions in β cells.  相似文献   

19.
20.
Survival of retinal ganglion cells (RGC) is compromised in several vision-threatening disorders such as ischemic and hypertensive retinopathies and glaucoma. Pigment epithelium-derived factor (PEDF) is a naturally occurring pleiotropic secreted factor in the retina. PEDF produced by retinal glial (Müller) cells is suspected to be an essential component of neuron-glial interactions especially for RGC, as it can protect this neuronal type from ischemia-induced cell death. Here we show that PEDF treatment can directly affect RGC survival in vitro. Using Müller cell-RGC-co-cultures we observed that activity of Müller-cell derived soluble mediators can attenuate hypoxia-induced damage and RGC loss. Finally, neutralizing the activity of PEDF in glia-conditioned media partially abolished the neuroprotective effect of glia, leading to an increased neuronal death in hypoxic condition. Altogether our results suggest that PEDF is crucially involved in the neuroprotective process of reactive Müller cells towards RGC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号