首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 257 毫秒
1.
本研究以科尔沁沙地典型固沙植物小叶锦鸡儿(Caragana microphylla)为对象,采用氧稳定同位素技术,比较了小叶锦鸡儿群落内3、5和9年生小叶锦鸡儿生长季内土壤水、降雨与植株木质部水的δ18O值关系,并利用多元线性混合模型定量研究了不同树龄小叶锦鸡儿用水来源;结合不同树龄小叶锦鸡儿土壤水分季节特征和根系分布分析用水来源变化原因;通过评价不同树龄小叶锦鸡儿与地区水分条件适应性,分析3种树龄小叶锦鸡儿的水分竞争关系,判断群落稳定性。结果表明:根系的分布决定了不同树龄小叶锦鸡儿对水分利用的范围和选择何种用水策略的可能性,水分的分布也一定程度上影响了小叶锦鸡儿的主要用水来源。生长季内30~80 cm土层是3年生小叶锦鸡儿主要水分利用层位;30~100 cm土层是5年生小叶锦鸡儿主要水分利用层位,其中80~100 cm土层贡献率所占较大; 0~30和100~160 cm土层是9年生小叶锦鸡儿主要水分利用层位。小叶锦鸡儿群落内,不同树龄植株之间不存在强烈的水分竞争,该地区小叶锦鸡儿群落较为稳定。  相似文献   

2.
基于较大降水事件的人工固沙植被区植物水分来源分析   总被引:1,自引:0,他引:1  
水分是干旱、半干旱地区植物生长最主要的限制因子.为了探究较大降水事件后两种常见人工固沙植物柠条与油蒿的水分来源差异,分析降水、土壤水、地下水和植物茎水的氢氧稳定同位素特征,并采用直接对比法和多元线性混合模型对植物水分来源进行分析.结果表明: 沙坡头地区大气降水线方程为δD=7.83δ18O+5.64(R2=0.91).降水δ18O值的变化范围较大,具有明显的季节变化规律;生长季前期与后期δ18O值相对较高,生长旺盛期δ18O处于较低水平.浅层土壤水δ18O值变化范围较大,随土层深度的增加,土壤水δ18O值变幅减小且呈减小趋势.在降水后第一天,柠条和油蒿分别对40~80与20~60 cm土层土壤水利用比例较高,利用比率分别为56.1%和56.4%.降水一周后,柠条与油蒿都不同程度地增加了对浅层土壤水的利用比例.柠条和油蒿对0~40和0~20 cm土层土壤水分利用率分别增加了12.5%和10%.表明在较大降水事件后,柠条和油蒿会通过调整水分利用策略来积极适应干旱环境.  相似文献   

3.
20世纪50年代以来,樟子松(Pinus sylvestris var.mongolica在中国北方干旱半干旱地区沙地广泛引种.近年来一些早期引种的樟子松人工林出现了早衰现象.分析生境水分条件变化、判断樟子松采取何种水分利用策略对于认识其早衰现象很有裨益.因此,本研究利用稳定同位素示踪技术,研究了科尔沁沙地东南缘固定沙丘丘间低地30年生樟子松人工林的水分来源及其利用的季节动态,分析了降水和土壤水分变化对樟子松水分利用的影响,阐明了樟子松与伴生植物(黄柳Salix gordeieril)在水分来源方面的异同.结果表明,樟子松及其主要伴生植物黄柳枝条水的稳定18O同位素组成(δ18O)存在明显的季节变化;樟子松的水分来源主要来自20~ 40 cm或更深土层;樟子松和主要伴生植物黄柳之间存在明显的水分竞争,后者比樟子松先行利用最近较强降水(如降水量>10 mm),从而影响樟子松水源的补给.本研究对于揭示沙地樟子松衰退与水分利用策略的关系具有重要意义.  相似文献   

4.
不同降水条件下两种荒漠植物的水分利用策略   总被引:9,自引:1,他引:8       下载免费PDF全文
自然降水是干旱、半干旱地区荒漠植物重要的水分来源。为了说明自然降水量的变化对干旱、半干旱地区荒漠植物水分利用策略的影响, 研究了两种常见荒漠植物油蒿(Artemisia ordosica)和白刺(Nitraria tangutorum)在3个不同自然降水地区(内蒙古的杭锦旗和磴口县及甘肃的民勤县)的水分来源、水分利用效率及植物的抗逆能力的变化。测定了不同地区的植物茎水、各潜在水源(降水、地下水和土壤水)的δD和δ18O值, 并利用IsoSource模型分析了这两种植物在不同地区对这些潜在水源的选择性利用情况; 同时测定了叶片的δ13C和游离脯氨酸浓度。结果表明: 在年降水量最高的杭锦旗, 这两种植物对浅层土壤水的利用比例最高, 其中油蒿主要利用0-50 cm土层中的水源; 在年降水量相对较低的磴口和民勤, 植物利用的主要水源为深层土壤水和地下水。随着年降水量的增加, 这两种植物的水分利用效率逐渐降低。白刺的脯氨酸浓度大于油蒿, 与水分利用效率无关, 但油蒿的水分利用效率和脯氨酸浓度成正比。研究表明, 荒漠植物能通过改变其水分利用策略和其他生理特性适应自然降水量的变化, 但不同植物种采用的策略可能有所不同。  相似文献   

5.
岩溶山区水分时空异质性及植物适应机理研究进展   总被引:13,自引:0,他引:13  
西南岩溶地区虽然降水充沛,但因具有二元水文结构,地表水大量渗漏、地下水深埋,加上土层浅薄且分布不连续、土壤储水能力低,岩溶干旱严重,水分亏缺仍然是植被恢复重建的关键限制因子。如何有效地进行植被的恢复重建和实现水土资源的协调利用,是该地区石漠化综合治理面临的主要难题。由于地质背景的特殊性、地形地貌的复杂性和生境的高度异质性,岩溶山区水分运移过程与其他类型区显著不同,亟需综合考虑岩性、地形地貌、土壤与岩石分布、植被等因素的影响。在简要介绍岩溶山区土壤-岩石环境特征的基础上,综述了降雨入渗产流规律、水分时空异质性、植物水分来源及适应机理等几个方面的研究进展,探讨了当前研究中存在的问题,并对未来研究进行了展望。今后应以大气-植被-土壤-岩石系统为研究对象,将水分运移过程与植物的水分利用方式有机结合,综合运用土壤物理学、生态水文学、植物生理学、岩溶地质学等多学科研究手段,探讨表层岩溶带的水文调节功能及其主要影响因素,揭示坡面、小流域尺度植被与水文过程的相互作用机理,为西南岩溶山区水源涵养型植物群落的优化配置提供科学依据。  相似文献   

6.
具鳞水柏枝(Myricaria squamosa)是我国高寒地区广泛分布的优势河谷灌木, 具有维持河谷湿地系统稳定的功能。然而, 目前国内外有关具鳞水柏枝水分利用来源的定量研究很少。该文运用氢稳定同位素示踪方法, 分析了青海湖流域具鳞水柏枝茎(木质部)水和潜在水源(地下水、河水和土壤水)的氢稳定同位素比率(δD)的季节变化, 发现具鳞水柏枝在不同水文环境下的植物水分利用来源有明显差异。研究结果表明, 生长在河岸边的具鳞水柏枝在6、7月主要利用地下水与河水, 分别占其所利用水分的89%、86%和55%、65%, 8月主要利用0-20 cm土层的土壤水, 9月水源不详。生长在离河岸约100 m处的具鳞水柏枝在6月主要利用地下水与河水(91%、70%), 在7-9月以0-60 cm土层的土壤水为主要水源。这表明生长在河岸边的具鳞水柏枝对地下水和河水的依赖程度较高, 而距离河岸约100 m时对土壤水的利用量较多, 反映出生长在不同生境中的具鳞水柏枝对特定水分条件的特殊适应结果。  相似文献   

7.
占全球陆地面积约15%的喀斯特地区,有着不同于绝大多数非喀斯特地区的水文地质结构,使得许多在非喀斯特地区行之有效的研究方法难以直接用于喀斯特地区,而且这种限制在植物水分来源的研究上体现得尤为明显.本文从为什么要在喀斯特地区开展植物水分来源的研究、为什么一定要用稳定同位素的方法、使用该方法在喀斯特地区有何挑战,以及应对这些挑战的可能解决方案是什么等4个方面,综述了喀斯特地区植物水分来源研究普遍关注问题的由来和可能应对方案.文中重点阐述了与其他方法相比,稳定同位素技术在喀斯特地区植物水分来源研究中的优势以及难以完全满足其前提条件的挑战,结合现有相关研究的有益探索,提出在喀斯特地区的研究不必过分追求对各水源在具体深度上的细致划分,从水源特性的角度进行区分是更为适宜的途径.  相似文献   

8.
基于稳定氧同位素确定植物水分来源不同方法的比较   总被引:3,自引:0,他引:3  
利用稳定同位素技术确定植物水分来源,对提高生态水文过程的认识和对干旱半干旱区的生态管理至关重要。目前基于稳定同位素技术确定植物水分来源的方法众多,但不同方法之间对比的研究较少。本研究基于原位样品采集,室内实验测试,利用直接对比法、多元线性混合模型(IsoSource)、贝叶斯混合模型(MixSIR、MixSIAR)和吸水深度模型分析植物水分来源,并对比各方法的优缺点。结果表明:相对于多元线性混合模型(IsoSource)而言,贝叶斯混合模型(MixSIR、MixSIAR)具有更好的水源区分性能,但对数据要求较高,且植物木质部水和潜在水源同位素组成的标准差越小,模型运行结果的可信度更高。本研究中贝叶斯混合模型(MixSIR)为最优解。在利用稳定氢氧同位素技术确定植物水分来源时,可先通过直接对比法定性判断植物可能利用的潜在水源,然后再用多元线性混合模型(IsoSource)、贝叶斯混合模型(MixSIR、MixSIAR)计算出各潜在水源对植物的贡献率和贡献范围,必要时可评估模型性能,选择出最优模型,定量分析植物的水分来源。若植物主要吸收利用不同土层深度的土壤水,可结合吸水深度模型计算出植物吸收土壤水的平均深度。本研究为干旱半干旱地区利用同位素技术确定植物水分来源方法的选择提供了理论依据。  相似文献   

9.
植物物候变化研究进展   总被引:3,自引:0,他引:3  
全球变化背景下,植物物候对气候变暖的响应已经成为研究热点。本文就植物物候对温度、水分、光照等气象因子的响应做了总结,并对国内外物候研究方法进行概述,特别是综合了近年来国内物候变化研究的文献,对我国植物春季物候变化情况作了统计:全球变化对我国大部分地区植被的影响主要是生长季提前,但新疆干旱区植被生长季开始日期在区域尺度上没有显著提前或者延迟趋势。由于物候研究方法的差异以及研究尺度的不同,在一定程度上弱化了研究结果的可比性,建议我国应基于目前的中国通量观测网以及各级生态监测网络,建立统一的物候监测平台,同时完善通量数据提取植物物候信息的方法,特别是阈值判定标准,为分析植物物候响应气候变化提供参考。  相似文献   

10.
柴达木盆地诺木洪地区5种优势荒漠植物水分来源   总被引:6,自引:0,他引:6  
邢星  陈辉  朱建佳  陈同同 《生态学报》2014,34(21):6277-6286
通过测定柴达木盆地诺木洪地区5种荒漠植物木质部水分及其不同潜在水源的稳定性氢氧同位素值,利用多源线性混合模型(Iso Source)分析了不同水分来源对荒漠植物的贡献率。结果表明:当地大气降水线为y=7.019x-3.217(R2=0.970,P0.001),很好地反映了该地区气温高、湿度低的气候特点。诺木洪地区5种优势植物整个生长季使用土壤水比例最大,其次为地下水。驼绒藜使用10—50 cm土壤层水分,白刺、柽柳利用50—70 cm土壤层水分比例最大,这两种植物存在对50—70 cm土壤层水分的竞争;麻黄和沙拐枣对各层土壤水分的利用比例较为平均,因此存在对各层土壤水的竞争现象。4种灌木白刺、麻黄、柽柳、沙拐枣在生长季对不同水源的利用存在转换,但生长季末期都对地下水利用比例逐渐增大。地下水是荒漠植被的重要水源,因此维持干旱半干旱地区地下水水位对荒漠植物的生长具有重要意义。植物根系贯穿于整个土壤剖面,但是根系分布与其吸水位置不完全对应,过去利用根系结构进行植物水分来源判断的方法存在一定的局限性。  相似文献   

11.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

12.
Hydraulic lift: a potentially important ecosystem process   总被引:3,自引:0,他引:3  
Hydraulic lift is the process by which some deep-rooted plants take in water from lower soil layers and exude that water into upper, drier soil layers. Hydraulic lift is beneficial to the plant transporting the water, and may be an important water source for neighboring plants. Recent evidence shows that hydraulically lifted water can promote greater plant growth, and could have important implications for net primary productivity, as well as ecosystem nutrient cycling and water balance.  相似文献   

13.
陆地生态系统植物的氮源及氮素吸收   总被引:9,自引:0,他引:9  
氮是植物生长发育所必需的营养元素,也是其主要的限制因子之一.陆地生态系统植物所需氮的来源及植物对氮素的吸收利用均受控于其种类和生长环境.环境条件的改变,一方面可能改变植物生长区原有氮的形态、浓度、赋存方式等,从而改变氮对植物的供给状况;另一方面可能引起植物生长区土壤质量、水分利用状况、光照等的改变,从而产生耦合现象,直接影响植物的生理生态特性,使植物对氮素的吸收利用发生改变,导致植物生长区的种群类型及物种多样性发生改变,并直接影响到生态系统的功能及演替.本文主要对陆地生态系统中高等植物生长发育所需氮素的来源及植物对氮素吸收利用过程中的影响因素进行了综述和讨论,并结合国内外在该领域的研究现状对其研究前景进行了展望.  相似文献   

14.
Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil–water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil–plant water relationships and soil–water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of sustainable development.  相似文献   

15.
科尔沁沙地南缘主要固沙植物旱季水分来源   总被引:8,自引:0,他引:8  
探讨固沙植物水分来源以及物种间水分利用关系对揭示植物共存机理和固沙植被稳定机制具有重要意义.本研究选取科尔沁沙地南缘两种典型生境(固定沙丘和丘间低地)共12种固沙植物,通过测定植物水、同期降水、地下水和土壤水的稳定同位素比率(δD和δ18O),利用IsoSource模型计算植物对不同深度土壤水的利用比例,初步阐明半干旱沙区主要固沙植物旱季水分来源以及物种间的水分利用关系.结果表明:两种生境中不同生活型固沙植物水δD和δ18O差异显著,但丘间低地乔木和灌木差异不显著.在丘间低地从乔木到草本水分来源逐渐变浅,乔木和灌木主要利用50~150 cm或30~50 cm土壤水,半灌木主要利用10~30 cm土壤水,草本主要利用0~10 cm土壤水;固定沙丘灌木主要利用0~30 cm土壤水,半灌木则主要利用50 cm附近土壤水.表明旱季固定沙丘植物比丘间低地植物更依赖0~50 cm土壤水.固沙植物水分来源与植物生活型、根系分布范围有关,其中根系分布范围影响可能更大.  相似文献   

16.
通过对两个品种白三叶Trifolium repens cv.Haifa(海发)和Trifolium repens cv.Rivendel(瑞文德)盆栽试验,模拟3种不同的土壤水分状况(无水分胁迫:保持植株良好的水分供应;轻度胁迫:表层0~20cm土壤处于干旱状态;重度胁迫:表层0~20cm土壤处于极干旱状态,20~40cm土壤处于干旱状态)对白三叶光合作用和根系生长的影响.结果表明,当植株未遭受水分胁迫时,两个品种白三叶的光合作用和根系生长状况没有明显差异;当表层0~20cm处于干旱状态时,'海发'在处理后期的净光合速率和水分利用效率升高,根系生长量增大,表现出促进作用,'瑞文德'受到的影响不显著;当表层0~20cm处于极干旱、20~40cm处于干旱状态时,'海发'在处理前期受到轻微影响,随后恢复正常状态,'瑞文德'则受到较严重的影响.随着干旱程度的加深和时间的延长,白三叶的根冠比逐渐增大.与'瑞文德'相比,在相同时期相同胁迫程度下,'海发'的根冠比没有显著差异,但深根数量大大超过'瑞文德',因而,'海发'的耐旱能力强于'瑞文德'.  相似文献   

17.
Plant-induced Changes in Soil Structure: Processes and Feedbacks   总被引:21,自引:0,他引:21  
Soil structure influences the growth and activity of organisms living in soil. In return, microbes, fauna, and plants affect structure. The objective of this paper is to review the role of plants in modifying soil structure. Vegetation affects structural form and stability at different scales and through various direct and indirect mechanisms. By penetrating the soil, roots form macropores which favour fluid transport. They also create zones of failure which contribute to fragment the soil and form aggregates. This phenomenon is enhanced by the wetting and drying cycles associated with plant growth. Drying also causes shrinkage and strengthening of the soil. Anchorage of roots and the exudation of cementing material stabilizes soil structure. Finally, as a source of C, roots and plant residues provide a food source to the microflora and fauna which contribute to structure formation and stabilization. In return, plant-induced changes in structure will affect plant growth mostly by modifying the root physical environment, and the water and nutrient cycles.  相似文献   

18.
Mature columnar cardon (Pachycereus pringlei) and saguaro (Carnegiea gigantea) cacti sometimes grow in very dense stands without apparent effect on growth; their seedlings and young plants are commonly found in clusters under legume nurse trees. The potential preference between space and water of young cardon was quantitatively measured under controlled environments for 30 months. The assessment used two types of experiments, one with different plant densities and the other of two plant densities combined with different irrigation regimes. Increases in population density reduced height and dry weight of the plants, but increased their volume and hydration; the water potential of the plants and the soil was less negative for denser populations. Addition of water above the minimum moisture required for growth made water potential less negative in plants and soil. The denser the population in a pot, the less soil surface was exposed to hot air. We conclude that water evaporation from soil surface from exposure to hot air during cultivation of this cactus was significantly reduced when the population density increased. Since loss of soil water from transpiration by cacti is very limited, evaporation directly from soil surface becomes dominant. With less evaporation under high plant density (shading), more water remains in the plant-soil system to be available for storage in the plant tissue.  相似文献   

19.
The rare-earth element (REE) contents of water and vegetables from two typical REE-high background regions and a normal region in Gannan, Jiangxi Province, indicated that the REE contents were significantly different from those of water and vegetables, respectively. The average values are 0.03 mg/L and 0.11 mg/L REE for water from regions A and B. As the REE contents of vegetables from region A are different from region B, it is suggested that there are a number of factors controlling the REE distribution from those among plants. By comparing with the normal region, the soluble REE contents of water from the REE-high background regions are higher than those of the normal region by factors of 18 and 68, respectively. The REE contents of most plants and crops from regions A and B are higher than those of the normal region. It is clear that the REEs are the indispensable elements of plants during their growing period. Why are the REE contents of some plants from regions A and B usually higher than those from the normal region? The answer is that the plants and crops have passively absorbed REE during their growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号