首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within the pattern-mixture modeling framework for informative dropout, conditional linear models (CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not just at observation times). However, in contrast with selection models, inferences about marginal covariate effects in CLMs are not readily available if nonidentity links are used in the mean structures. In this article, we propose a CLM for long series of longitudinal binary data with marginal covariate effects directly specified. The association between the binary responses and the dropout time is taken into account by modeling the conditional mean of the binary response as well as the dependence between the binary responses given the dropout time. Specifically, parameters in both the conditional mean and dependence models are assumed to be linear or quadratic functions of the dropout time; and the continuous dropout time distribution is left completely unspecified. Inference is fully Bayesian. We illustrate the proposed model using data from a longitudinal study of depression in HIV-infected women, where the strategy of sensitivity analysis based on the extrapolation method is also demonstrated.  相似文献   

2.
Longitudinal studies frequently incur outcome-related nonresponse. In this article, we discuss a likelihood-based method for analyzing repeated binary responses when the mechanism leading to missing response data depends on unobserved responses. We describe a pattern-mixture model for the joint distribution of the vector of binary responses and the indicators of nonresponse patterns. Specifically, we propose an extension of the multivariate logistic model to handle nonignorable nonresponse. This method yields estimates of the mean parameters under a variety of assumptions regarding the distribution of the unobserved responses. Because these models make unverifiable identifying assumptions, we recommended conducting sensitivity analyses that provide a range of inferences, each of which is valid under different assumptions for nonresponse. The methodology is illustrated using data from a longitudinal study of obesity in children.  相似文献   

3.
Cook RJ  Zeng L  Yi GY 《Biometrics》2004,60(3):820-828
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the "last observation carried forward" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior.  相似文献   

4.
For analyzing longitudinal binary data with nonignorable and nonmonotone missing responses, a full likelihood method is complicated algebraically, and often requires intensive computation, especially when there are many follow-up times. As an alternative, a pseudolikelihood approach has been proposed in the literature under minimal parametric assumptions. This formulation only requires specification of the marginal distributions of the responses and missing data mechanism, and uses an independence working assumption. However, this estimator can be inefficient for estimating both time-varying and time-stationary effects under moderate to strong within-subject associations among repeated responses. In this article, we propose an alternative estimator, based on a bivariate pseudolikelihood, and demonstrate in simulations that the proposed method can be much more efficient than the previous pseudolikelihood obtained under the assumption of independence. We illustrate the method using longitudinal data on CD4 counts from two clinical trials of HIV-infected patients.  相似文献   

5.
This article presents a likelihood-based method for handling nonignorable dropout in longitudinal studies with binary responses. The methodology developed is appropriate when the target of inference is the marginal distribution of the response at each occasion and its dependence on covariates. A "hybrid" model is formulated, which is designed to retain advantageous features of the selection and pattern-mixture model approaches. This formulation accommodates a variety of assumed forms of nonignorable dropout, while maintaining transparency of the constraints required for identifying the overall model. Once appropriate identifying constraints have been imposed, likelihood-based estimation is conducted via the EM algorithm. The article concludes by applying the approach to data from a randomized clinical trial comparing two doses of a contraceptive.  相似文献   

6.
Structural analysis of functionally different smooth muscles   总被引:1,自引:0,他引:1  
Summary The ultrastructure of the longitudinal and circular muscle cells of the guinea pig stomach which show different contractile responses was compared. The extracellular space within the muscle bundles is about 12.1% in the longitudinal layer and about 4.4% in the circular layer. Nexuses were consistently found in the circular muscle layer but not in the longitudinal muscle layer. Numbers of both mitochondria and microtubules per unit area of smooth muscle cell are larger in the longitudinal than in the circular muscle. Cellular area occupied by sarcoplasmic reticulum is about 4.7% in the longitudinal muscle, 2.3% in the circular muscle. The numbers of caveolae are almost the same in both tissues. The most distinct difference between the two types of smooth muscle is the appearance of the thick filaments. The circular muscle cell contains approximately 50 thick filaments per 0.5 m2 of cytoplasmic area, while the longitudinal muscle cell has only about 25 filaments which were usually much thinner than those of the circular muscle. These results indicate that the contractile apparatus itself is different in longitudinal and circular smooth muscles of the guinea pig stomach.We are grateful to Dr. Y. Furukawa, Physical Section, Institute of Low Temperature Science, Hokkaido University, for help in the use of their film analyzing system. We are also indebted to the Department of Pathology of our college, for the use of a Photo Pattern Analyzer throughout this experiment.  相似文献   

7.
We consider longitudinal studies in which the outcome observed over time is binary and the covariates of interest are categorical. With no missing responses or covariates, one specifies a multinomial model for the responses given the covariates and uses maximum likelihood to estimate the parameters. Unfortunately, incomplete data in the responses and covariates are a common occurrence in longitudinal studies. Here we assume the missing data are missing at random (Rubin, 1976, Biometrika 63, 581-592). Since all of the missing data (responses and covariates) are categorical, a useful technique for obtaining maximum likelihood parameter estimates is the EM algorithm by the method of weights proposed in Ibrahim (1990, Journal of the American Statistical Association 85, 765-769). In using the EM algorithm with missing responses and covariates, one specifies the joint distribution of the responses and covariates. Here we consider the parameters of the covariate distribution as a nuisance. In data sets where the percentage of missing data is high, the estimates of the nuisance parameters can lead to highly unstable estimates of the parameters of interest. We propose a conditional model for the covariate distribution that has several modeling advantages for the EM algorithm and provides a reduction in the number of nuisance parameters, thus providing more stable estimates in finite samples.  相似文献   

8.
Albert PS  Follmann DA  Wang SA  Suh EB 《Biometrics》2002,58(3):631-642
Longitudinal clinical trials often collect long sequences of binary data. Our application is a recent clinical trial in opiate addicts that examined the effect of a new treatment on repeated binary urine tests to assess opiate use over an extended follow-up. The dataset had two sources of missingness: dropout and intermittent missing observations. The primary endpoint of the study was comparing the marginal probability of a positive urine test over follow-up across treatment arms. We present a latent autoregressive model for longitudinal binary data subject to informative missingness. In this model, a Gaussian autoregressive process is shared between the binary response and missing-data processes, thereby inducing informative missingness. Our approach extends the work of others who have developed models that link the various processes through a shared random effect but do not allow for autocorrelation. We discuss parameter estimation using Monte Carlo EM and demonstrate through simulations that incorporating within-subject autocorrelation through a latent autoregressive process can be very important when longitudinal binary data is subject to informative missingness. We illustrate our new methodology using the opiate clinical trial data.  相似文献   

9.
A simulation was carried out to investigate the methods of analyzing uncertain binary responses for success or failure at first insemination. A linear mixed model that included, herd, year, and month of mating as fixed effects; and unrelated service sire, sire and residual as random effects was used to generate binary data. Binary responses were assigned using the difference between days to calving and average gestation length. Females deviating from average gestation length lead to uncertain binary responses. Thus, the methods investigated were the following: (1) a threshold model fitted to certain (no uncertainty) binary data (M1); (2) a threshold model fitted to uncertain binary data ignoring uncertainty (M2); and (3) analysis of uncertain binary data, accounting for uncertainty from day 16 to 26 (M3) or from day 14 to 28 (M4) after introduction of the bull, using a threshold model with fuzzy logic classification. There was virtually no difference between point estimates obtained from M1, M3, and M4 with true values. When uncertain binary data were analyzed ignoring uncertainty (M2), sire variance and heritability were underestimated by 22 and 24%, respectively. Thus, for noisy binary data, a threshold model contemplating uncertainty is needed to avoid bias when estimating genetic parameters.  相似文献   

10.

Background

Misclassification has been shown to have a high prevalence in binary responses in both livestock and human populations. Leaving these errors uncorrected before analyses will have a negative impact on the overall goal of genome-wide association studies (GWAS) including reducing predictive power. A liability threshold model that contemplates misclassification was developed to assess the effects of mis-diagnostic errors on GWAS. Four simulated scenarios of case–control datasets were generated. Each dataset consisted of 2000 individuals and was analyzed with varying odds ratios of the influential SNPs and misclassification rates of 5% and 10%.

Results

Analyses of binary responses subject to misclassification resulted in underestimation of influential SNPs and failed to estimate the true magnitude and direction of the effects. Once the misclassification algorithm was applied there was a 12% to 29% increase in accuracy, and a substantial reduction in bias. The proposed method was able to capture the majority of the most significant SNPs that were not identified in the analysis of the misclassified data. In fact, in one of the simulation scenarios, 33% of the influential SNPs were not identified using the misclassified data, compared with the analysis using the data without misclassification. However, using the proposed method, only 13% were not identified. Furthermore, the proposed method was able to identify with high probability a large portion of the truly misclassified observations.

Conclusions

The proposed model provides a statistical tool to correct or at least attenuate the negative effects of misclassified binary responses in GWAS. Across different levels of misclassification probability as well as odds ratios of significant SNPs, the model proved to be robust. In fact, SNP effects, and misclassification probability were accurately estimated and the truly misclassified observations were identified with high probabilities compared to non-misclassified responses. This study was limited to situations where the misclassification probability was assumed to be the same in cases and controls which is not always the case based on real human disease data. Thus, it is of interest to evaluate the performance of the proposed model in that situation which is the current focus of our research.
  相似文献   

11.
R L Prentice 《Biometrics》1988,44(4):1033-1048
Regression methods are considered for the analysis of correlated binary data when each binary observation may have its own covariates. It is argued that binary response models that condition on some or all binary responses in a given "block" are useful for studying certain types of dependencies, but not for the estimation of marginal response probabilities or pairwise correlations. Fully parametric approaches to these latter problems appear to be unduly complicated except in such special cases as the analysis of paired binary data. Hence, a generalized estimating equation approach is advocated for inference on response probabilities and correlations. Illustrations involving both small and large block sizes are provided.  相似文献   

12.

Background

Estimates of variance components for binary responses in presence of extreme case problems tend to be biased due to an under-identified likelihood. The bias persists even when a normal prior is used for the fixed effects.

Methods

A simulation study was carried out to investigate methods for the analysis of binary responses with extreme case problems. A linear mixed model that included a fixed effect and random effects of sire and residual on the liability scale was used to generate binary data. Five simulation scenarios were conducted based on varying percentages of extreme case problems, with true values of heritability equal to 0.07 and 0.17. Five replicates of each dataset were generated and analyzed with a generalized prior (g-prior) of varying weight.

Results

Point estimates of sire variance using a normal prior were severely biased when the percentage of extreme case problems was greater than 30%. Depending on the percentage of extreme case problems, the sire variance was overestimated when a normal prior was used by 36 to 102% and 25 to 105% for a heritability of 0.17 and 0.07, respectively. When a g-prior was used, the bias was reduced and even eliminated, depending on the percentage of extreme case problems and the weight assigned to the g-prior. The lowest Pearson correlations between true and estimated fixed effects were obtained when a normal prior was used. When a 15% g-prior was used instead of a normal prior with a heritability equal to 0.17, Pearson correlations between true and fixed effects increased by 11, 20, 23, 27, and 60% for 5, 10, 20, 30 and 75% of extreme case problems, respectively. Conversely, Pearson correlations between true and estimated fixed effects were similar, within datasets of varying percentages of extreme case problems, when a 5, 10, or 15% g-prior was included. Therefore this indicates that a model with a g-prior provides a more adequate estimation of fixed effects.

Conclusions

The results suggest that when analyzing binary data with extreme case problems, bias in the estimation of variance components could be eliminated, or at least significantly reduced by using a g-prior.  相似文献   

13.
We explore a Bayesian approach to selection of variables that represent fixed and random effects in modeling of longitudinal binary outcomes with missing data caused by dropouts. We show via analytic results for a simple example that nonignorable missing data lead to biased parameter estimates. This bias results in selection of wrong effects asymptotically, which we can confirm via simulations for more complex settings. By jointly modeling the longitudinal binary data with the dropout process that possibly leads to nonignorable missing data, we are able to correct the bias in estimation and selection. Mixture priors with a point mass at zero are used to facilitate variable selection. We illustrate the proposed approach using a clinical trial for acute ischemic stroke.  相似文献   

14.
Six compounds were identified from gland extracts of the cotton bollworm, Heliothis armigera(Hubner): (Z)-11-hexadecenal (Z11-16:Ald), (Z)-9-hexa-decenal (Z9-16:Ald), hexadecanal, (Z)-11-hexadecenol (Z11-16:OH), (Z)-7-hexadecenal (Z7-16:Ald), and (Z)-9-tetradecenal (Z9-14:Ald). Each of the compounds that were identified was examined for its ability to elicit sexual responses from male moths in a flight tunnel. Males flew upwind to Z11-16:Ald alone, but greater levels of copulatory responses were evoked with the addition of 2.5% Z9-16:Ald to the Z11-16:Ald. Addition of hexadecanal to the binary mixture had no effect in raising the behavioral response of the males in the flight tunnel. The effect of Z7-16:Ald on male flight depended on the loading. The addition of 1% of this component to 2 mg of the binary mixture reduced levels of copulatory response, but the same addition (1 %) to 10 g of the binary mixture increased copulatory response. The addition of 79-14:Ald or Z11-16:OH to the binary mixture reduced behavioral responses of males. High loadings of the binary mixture (200–2000 g) were better than a low loading (10 g) in eliciting response of males.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 2455-E, 1988 series.  相似文献   

15.
In many studies, the association of longitudinal measurements of a continuous response and a binary outcome are often of interest. A convenient framework for this type of problems is the joint model, which is formulated to investigate the association between a binary outcome and features of longitudinal measurements through a common set of latent random effects. The joint model, which is the focus of this article, is a logistic regression model with covariates defined as the individual‐specific random effects in a non‐linear mixed‐effects model (NLMEM) for the longitudinal measurements. We discuss different estimation procedures, which include two‐stage, best linear unbiased predictors, and various numerical integration techniques. The proposed methods are illustrated using a real data set where the objective is to study the association between longitudinal hormone levels and the pregnancy outcome in a group of young women. The numerical performance of the estimating methods is also evaluated by means of simulation.  相似文献   

16.
The modeling of generalized estimating equations used in the analysis of longitudinal data whether in continuous or discrete variables, necessarily requires the prior specification of a correlation matrix in its iterative process in order to obtain the estimates of the regression parameters. Such a matrix is called working correlation matrix and its incorrect specification produces less efficient estimates for the model parameters. Due to this fact, this study aims to propose a selection criterion of working correlation matrix based on the covariance matrix estimates of correlated responses resulting from the limiting values of the association parameter estimates. For validation of the criterion, we used simulation studies considering normal and binary correlated responses. Compared to some criteria in the literature, it was concluded that the proposed criterion resulted in a better performance when the correlation structure for exchangeable working correlation matrix was considered as true structure in the simulated samples and for large samples, the proposed criterion showed similar behavior to the other criteria, resulting in higher success rates.  相似文献   

17.
In many observational studies, individuals are measured repeatedly over time, although not necessarily at a set of pre-specified occasions. Instead, individuals may be measured at irregular intervals, with those having a history of poorer health outcomes being measured with somewhat greater frequency and regularity. In this paper, we consider likelihood-based estimation of the regression parameters in marginal models for longitudinal binary data when the follow-up times are not fixed by design, but can depend on previous outcomes. In particular, we consider assumptions regarding the follow-up time process that result in the likelihood function separating into two components: one for the follow-up time process, the other for the outcome measurement process. The practical implication of this separation is that the follow-up time process can be ignored when making likelihood-based inferences about the marginal regression model parameters. That is, maximum likelihood (ML) estimation of the regression parameters relating the probability of success at a given time to covariates does not require that a model for the distribution of follow-up times be specified. However, to obtain consistent parameter estimates, the multinomial distribution for the vector of repeated binary outcomes must be correctly specified. In general, ML estimation requires specification of all higher-order moments and the likelihood for a marginal model can be intractable except in cases where the number of repeated measurements is relatively small. To circumvent these difficulties, we propose a pseudolikelihood for estimation of the marginal model parameters. The pseudolikelihood uses a linear approximation for the conditional distribution of the response at any occasion, given the history of previous responses. The appeal of this approximation is that the conditional distributions are functions of the first two moments of the binary responses only. When the follow-up times depend only on the previous outcome, the pseudolikelihood requires correct specification of the conditional distribution of the current outcome given the outcome at the previous occasion only. Results from a simulation study and a study of asymptotic bias are presented. Finally, we illustrate the main results using data from a longitudinal observational study that explored the cardiotoxic effects of doxorubicin chemotherapy for the treatment of acute lymphoblastic leukemia in children.  相似文献   

18.
Marginalized models (Heagerty, 1999, Biometrics 55, 688-698) permit likelihood-based inference when interest lies in marginal regression models for longitudinal binary response data. Two such models are the marginalized transition and marginalized latent variable models. The former captures within-subject serial dependence among repeated measurements with transition model terms while the latter assumes exchangeable or nondiminishing response dependence using random intercepts. In this article, we extend the class of marginalized models by proposing a single unifying model that describes both serial and long-range dependence. This model will be particularly useful in longitudinal analyses with a moderate to large number of repeated measurements per subject, where both serial and exchangeable forms of response correlation can be identified. We describe maximum likelihood and Bayesian approaches toward parameter estimation and inference, and we study the large sample operating characteristics under two types of dependence model misspecification. Data from the Madras Longitudinal Schizophrenia Study (Thara et al., 1994, Acta Psychiatrica Scandinavica 90, 329-336) are analyzed.  相似文献   

19.
Coull BA  Agresti A 《Biometrics》2000,56(1):73-80
The multivariate binomial logit-normal distribution is a mixture distribution for which, (i) conditional on a set of success probabilities and sample size indices, a vector of counts is independent binomial variates, and (ii) the vector of logits of the parameters has a multivariate normal distribution. We use this distribution to model multivariate binomial-type responses using a vector of random effects. The vector of logits of parameters has a mean that is a linear function of explanatory variables and has an unspecified or partly specified covariance matrix. The model generalizes and provides greater flexibility than the univariate model that uses a normal random effect to account for positive correlations in clustered data. The multivariate model is useful when different elements of the response vector refer to different characteristics, each of which may naturally have its own random effect. It is also useful for repeated binary measurement of a single response when there is a nonexchangeable association structure, such as one often expects with longitudinal data or when negative association exists for at least one pair of responses. We apply the model to an influenza study with repeated responses in which some pairs are negatively associated and to a developmental toxicity study with continuation-ratio logits applied to an ordinal response with clustered observations.  相似文献   

20.
Analyses of biomedical studies often necessitate modeling longitudinal causal effects. The current focus on personalized medicine and effect heterogeneity makes this task even more challenging. Toward this end, structural nested mean models (SNMMs) are fundamental tools for studying heterogeneous treatment effects in longitudinal studies. However, when outcomes are binary, current methods for estimating multiplicative and additive SNMM parameters suffer from variation dependence between the causal parameters and the noncausal nuisance parameters. This leads to a series of difficulties in interpretation, estimation, and computation. These difficulties have hindered the uptake of SNMMs in biomedical practice, where binary outcomes are very common. We solve the variation dependence problem for the binary multiplicative SNMM via a reparameterization of the noncausal nuisance parameters. Our novel nuisance parameters are variation independent of the causal parameters, and hence allow for coherent modeling of heterogeneous effects from longitudinal studies with binary outcomes. Our parameterization also provides a key building block for flexible doubly robust estimation of the causal parameters. Along the way, we prove that an additive SNMM with binary outcomes does not admit a variation independent parameterization, thereby justifying the restriction to multiplicative SNMMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号