首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Deglycosylation of chondroitin sulfate proteoglycan and derived peptides   总被引:1,自引:0,他引:1  
In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated [3H]glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight (approximately 370,000). Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors (apparent Mr approximately 360,000) suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions (the chondroitin sulfate rich regions of the proteoglycan) were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose acceptor activity comparable to the intact core protein.  相似文献   

2.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

3.
A lambda gt11 expression library containing cDNA from total chick embryo was screened with S103L, a rat monoclonal antibody which reacts specifically with the core protein of the chick cartilage chondroitin sulfate proteoglycan. One clone was identified which produced a 220-kDa beta-galactosidase/S103L-binding fusion protein. Sequencing the entire 1.5-kilobase cDNA insert showed that it contained a single open reading frame, which encoded a portion of the proteoglycan core protein from the chondroitin sulfate domain. This was confirmed by comparison with amino acid sequence data from peptide CS-B, which was derived from the chondroitin sulfate domain (Krueger, R.C., Jr., Fields, T. A., Hildreth, J., IV, and Schwartz, N.B. (1990) J. Biol. Chem. 265, 12075-12087). Furthermore, the 3' end of the insert overlapped with 23 bases at the 5' end of the published sequence for the C-terminal globular domain (Sai, S., Tanaka, T., Kosher, R. A., and Tanzer, M. L. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 5081-5085), which oriented this clone, as well as the CS peptide, along the protein core. The cDNA insert hybridized with a 9-kilobase mRNA from sternal chondrocytes as well as a similar sized message in brain but did not hybridize to any message from rat chondrosarcoma or from undifferentiated limb bud mesenchyme. In further studies, the fusion protein as well as a cyanogen bromide fragment (70 kDa) derived from it were isolated and shown to react with S103L, indicating that cleavage at methionine residues does not disrupt the antibody recognition site. Purification and N-terminal sequencing of the antigenic CNBr fragment derived from the fusion protein revealed that its N terminus is preceded by a methionine in the fusion protein and overlaps with the N terminus of peptide CS-B. As peptide CS-B is not recognized by S103L and the C terminus of peptide CS-B lies beyond the proteoglycan portion of the antigenic CNBr fragment, the S103L epitope is either contained within the 11 amino acids preceding the N terminus of peptide CS-B or it spans the clostripain cleavage site at the origin of the N terminus of peptide CS-B.  相似文献   

4.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Summary Monoclonal antibodies directed against specific carbohydrate epitopes on chondroitin 4-/dermatan sulfate, chondroitin 6-sulfate, keratan sulfate, and a monoclonal antibody directed against the hyaluronate binding region were used to characterize proteoglycans extracted from embryonic chick bone marrow. About half of the proteoglycans separate into the high density fraction on a CsCl gradient. Glycosaminoglycan-specific antibodies recognize proteoglycans from all fractions; this includes an antibody directed against keratan sulfate. Some proteoglycans, principally in the high buoyant density fraction, contain sites recognized by the antibody specific for the hyaluronate binding region. Within limits of detection, all core proteins belong to the high-molecular-weight category, with weights in excess of 212 kD. Antibodies directed against chondroitin 4-/dermatan sulfate and against keratan sulfate primarily bind to extracellular matrix material located in the extracellular spaces and to matrix elements in the pericellular regions of fibroblastic stromal cells. The antibody that recognizes chondroitin 6-sulfate binds to sites on surfaces of fibroblastic stromal cells and also to extracellular matrix material. Little or no antibody binding is detected on surfaces of granulocytic cells. These studies indicate that chondroitin sulfate and keratan sulfate chains are both present in the proteoglycan extract.  相似文献   

6.
Isoforms of corneal keratan sulfate proteoglycan   总被引:6,自引:0,他引:6  
Bovine corneal keratan sulfate proteoglycan was found to contain three major protein components. Two proteins (37 and 25 kDa) were released from the proteoglycan by endo-beta-galactosidase, N-glycanase, or chemical deglycosylation. A smaller protein (20 kDa), not covalently linked to keratan sulfate, co-purified with the proteoglycan by conventional and high performance ion exchange chromatography, by ethanol precipitation, and by affinity purification on columns of monoclonal antibody to keratan sulfate, but could be separated from the proteoglycan by gel filtration chromatography in dissociative agents. The three proteins produced different fragmentation patterns on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after digestion with V8 protease, and each had unique two-dimensional tryptic peptide maps. The N-terminal amino acid sequence of the core proteins differed. In addition, the proteoglycans containing these proteins differed in molecular size, suggesting different levels of glycosylation of the two core proteins. Similarity of the core proteins was suggested by similar amino acid composition, similarities in tryptic maps, and antigenic cross-reactivity. Corneal keratan sulfate proteoglycan, therefore, seems to occur in two different, but related, forms whose core proteins may represent members of a homologous family.  相似文献   

7.
Keratan sulfate II was prepared from the proteolytic digest of pig nucleus pulposus proteoglycan. The polysaccharide chains containing the fragment peptides of the core protein at their reducing terminal were subjected to anhydrous HF-solvolysis reaction and one of the glycopeptides from the keratan sulfate II-core protein linkage regions was isolated. The amino acid sequence of the peptide was deduced to be Ala-Pro-Ser-Pro-Gly, which is different from those reported for the attachment sites of chondroitin sulfate on core proteins from various sources. The results provided the first solid amino acid sequence for the keratan sulfate II-core protein linkage regions and suggested that the amino acid sequence of the core protein might determine the distribution of chondroitin sulfates and keratan sulfates along the core protein of the proteoglycan molecule.  相似文献   

8.
Radioisotopically labeled proteoglycans were isolated from a 4 M guanidine HCl, 2% Triton X-100 extract of corneal stroma from day 18 chicken embryos by anion-exchange chromatography. Two predominant proteoglycans in the sample were separated by octyl-Sepharose chromatography using a gradient elution of detergent in 4 M guanidine HCl. One proteoglycan had an overall mass of approximately 125 kDa, a single dermatan sulfate chain (approximately 85-90% chondroitin 4-sulfate, low iduronate content) of approximately 65 kDa, and a core protein after chondroitinase ABC digestion of approximately 45 kDa which also contained one to three N-linked oligosaccharides and one O-linked oligosaccharide. The other proteoglycan had an overall size of approximately 100 kDa, two to three keratan sulfate chains of approximately 15 kDa each, and a core protein following keratanase digestion of approximately 51 kDa which included two to three N-linked but no O-linked oligosaccharides. A larger size, a greater overall hydrophobicity (as measured by its interaction with octyl-Sepharose) and an absence of O-linked oligosaccharides argue that this core protein is a distinct gene product from the core protein of the dermatan sulfate proteoglycan.  相似文献   

9.
Two different chondroitin sulfate proteoglycans (CSPG) in embryonic chick brain were distinguished by immunoreactivity either with S103L, a rat monoclonal antibody which reacts specifically with an 11-amino-acid region in the chondroitin sulfate domain of the core protein of chick cartilage CSPG (Krueger, R. C., Jr., Fields, T. A., Mensch, J. R., and Schwartz, N. B. (1990) J. Biol. Chem. 265, 12088-12097), or with HNK-1, a mouse monoclonal antibody which reacts with a 3-sulfoglucuronic acid residue on neural glycolipids and glycoproteins (Chou, D. K. H., Ilyas, A., Evans, J. E. Costello, C., Quarles, R. H., and Jungawala, F. B. (1986) J. Biol. Chem. 261, 11717-11725) but not with both antibodies. This specific immunoreactivity was used to separate the two CSPGs for further characterization. The S103L reactive brain proteoglycan had a core protein of similar size to cartilage CSPG (370 kDa) but exhibited a smaller hydrodynamic size (K(av) of 0.308). It was substituted predominantly with chondroitin sulfate chains and virtually no keratan sulfate chains. The HNK-1 reactive CSPG had a smaller core protein (340 kDa), an even smaller hydrodynamic size (K(av) of 0.564), and was substituted with both chondroitin sulfate and keratan sulfate chains. Glycosidase digestion patterns with endo-beta-galactosidase, N-glycosidase F, neuraminidase, and O-glycosidase, and reactivity with an antibody to the hyaluronate binding region also showed significant differences between the two brain CSPGs. Expression of the S103L reactive brain CSPG was developmentally regulated from embryonic day 7 through 19 with a peak in core protein on day 13, and in mRNA expression at day 10. In contrast the HNK-1 reactive brain CSPG was constitutively present from day 7 through hatching. These data suggest that these two distinct core proteins are immunologically and biochemically unique translation products of two different CSPG genes.  相似文献   

10.
Proteoglycans of the articulating and growing zones of maximum and minimum contact of bovine fetal articular cartilage were studied and compared to proteoglycans of immature calf and adult steer. During fetal maturation, localized changes were observed as early as the second trimester of fetal life but were restricted to the most superficial zones. Proteoglycans extracted from the growing zones were purified by density-gradient ultracentrifugation. The majority of proteoglycan monomers were able to interact with endogenous hyaluronate to form aggregates. Monomers had, at all fetal stages, similar elution profiles on Sepharose 2B and similar ratios of chondroitin sulfate chains/keratan sulfate chains/O-glycosidically linked oligosaccharides. Keratan sulfate chains were of similar size at all stages, but chondroitin sulfate chain size decreased markedly with fetal maturation. In the first and second trimesters of fetal life, the proteoglycans were poorly substituted with glycosaminoglycans. A major increase in the absolute number of glycosaminoglycans and oligosaccharides attached to core protein was detected during the third trimester of fetal life. No further changes in substitution occurred in early postnatal life. Enzymatic digestion of proteoglycan monomer demonstrated that the increase in substitution with keratan sulfate occurred to the same extent in the main polysaccharide attachment region and in the keratan sulfate-rich region.  相似文献   

11.
Proteoglycans extracted with 4M-guanidinium chloride from pig laryngeal cartilage and bovine nasal septum were purified by density-gradient centrifugation in CsCl under 'associative' followed by 'dissociative' conditions [Hascall & Sajdera (1969) J. Biol. Chem. 244, 2384-2396]. Proteoglycans were then digested exhaustively with testicular hyaluronidase, which removed about 80% of the chondroitin sulphate. The hyaluronidase was purified until no proteolytic activity was detectable under the conditions used for digestion. The resulting 'core' proteins of both species were fractionated by a sequence of gel-chromatographic procedures which gave four major fractions of decreasing hydrodynamic size. Those that on electrophoresis penetrated 5.6% (w/v) polyacrylamide gels migrated as discrete bands whose mobility increased with decreasing hydrodynamic size. The unfractionated 'core' proteins had the same N-terminal amino acids as the intact proteoglycan, suggesting that no peptide bonds had been cleaved during hyaluronidase digestion. Alanine predominated as the N-terminal residue in all the fractions of both species. Fractions were analysed for amino acid, amino sugar, uronic acid and neutral sugar compositions. In pig 'core' proteins, the glutamic acid content increased significantly with hydrodynamic size, but in bovine 'core' proteins this trend was less marked. Significant differences in amino acid composition between fractions suggested that in each species there was more than one variety of proteoglycan. The molar proportions of xylose to serine destroyed on alkaline beta-elimination were equivalent in most fractions, indicating that the serine residues destroyed were attached to the terminal xylose of chondroitin sulphate chains. The ratio of serine residues to threonine residues destroyed on beta-elimination, was similar in all fractions of both species. Since the fractions of smallest hydrodynamic size contained less keratan sulphate than those of larger size, it implies that in the former the keratan sulphate chains were shorter than in the latter.  相似文献   

12.
Unique glycosylation of three keratan sulfate proteoglycan isoforms   总被引:3,自引:0,他引:3  
Recent work demonstrates isoforms of bovine corneal keratan sulfate proteoglycan containing structurally unique core proteins of 25 and 37 kDa (Funderburgh, J., and Conrad, G. (1990) J. Biol. Chem. 265, 8297-8303). In the current study, two forms (37A and 37B) of the 37-kDa protein were separated by ion-exchange chromatography after removal of keratan sulfate with endo-beta-galactosidase. Keratan sulfate linkage sites in core proteins were labeled with UDP-[3H]galactose using galactosyltransferase. Labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by tryptic digestion and reversed-phase chromatography. The 37A protein has three keratan sulfate-linkage sites, and the 37B and 25-kDa proteins each contain one linkage site. Reversed-phase tryptic maps of the three proteins differed in total peptide profile and in glycosylated peptides labeled with periodate-[3H]-NaBH4. Tryptic mapping of the two 37-kDa isoforms after deglycosylation showed differences in total tryptic peptides, in peptides labeled with [14C]iodoacetic acid, and in peptides recognized by antibodies to a mixture of the 37-kDa cores. Antibody to a synthetic peptide with N-terminal sequence obtained from mixed 37-kDa cores reacted exclusively with the 37B isoform. These results show that bovine corneal keratan sulfate proteoglycan has three different core proteins each with distinct glycosylation and unique primary structure.  相似文献   

13.
Hyaluronate binding properties of versican.   总被引:7,自引:0,他引:7  
We have previously cloned a large chondroitin sulfate proteoglycan (versican) from human fibroblasts. The primary sequence shows that the N terminus contains sequence homology with known hyaluronate-binding molecule, suggesting that versican can bind hyaluronate. To test this hypothesis we have reconstructed a full-length versican cDNA and a versican cDNA fragment encoding the N terminus and have transfected Chinese hamster ovary cells and mouse 3T3 fibroblasts, respectively, with these constructs. The transfected Chinese hamster ovary cells make a proteoglycan shown to be versican by enzymatic and immunologic analysis. No corresponding proteoglycan was seen in the control cells. Using hyaluronate affinity chromatography, we show that recombinant versican specifically binds hyaluronate and does not bind to heparin or chondroitin sulfate. The transfected fibroblasts make a 78-kDa truncated form of versican that also binds hyaluronate and does not bind the related polysaccharides, showing that the hyaluronate binding activity resides at the N terminus of versican. The binding of versican to hyaluronate is substrate-concentration dependent and time dependent and can be competed with unlabeled versican. The dissociation constant for versican binding to hyaluronate was determined to be 4 x 10(-9) M.  相似文献   

14.
A ternary complex of hyaluronic acid-binding region and link protein bound to hyaluronic acid was isolated from limit clostripain digests of proteoglycan aggregates isolated from the Swarm rat chondrosarcoma. Under these conditions, the hyaluronic acid-binding region has a molecular weight of ? 65,000 (HA-BR65). N-terminal amino acids in the complex were selectively l4C-carbamylated. The resulting derivatized HA-BR65 was isolated, and tryptic peptide maps were prepared and developed on two-dimensional TLC sheets. A single, labeled peptide was obtained which gave a Mr by ? 8,000 by SDS-PAGE. Chymotrypsin digestion of the ternary complex reduced the molecular weight of HA-BR65 to a polypeptide of ? 55,000 (HA-BR55) which still retains the same N-terminal tryptic peptide. Partial digestion of proteoglycan aggregates with clostripain generated a series of larger intermediates with the hyaluronic acid-binding region. Direct SDS-PAGE analysis revealed one major intermediate with Mr ? 109,000 (HA-BR109) as well as HA-BR65. After chondroitinase digestion, two additional prominent intermediates were observed on a SDS-PAGE gel at Mr ? 120,000 (HA-BR120) and ? 140,000 (HA-BR140). All the intermediates were recognized by a monoclonal antibody specific for the hyaluronic acid-binding region, and all of them contained the same N-terminal tryptic peptide. The results indicate that the N terminus of the core protein is at the hyaluronic acid-binding end of the proteoglycan and that the chondroitin sulfate chains are first present on the core protein in a region between 109,000 and 120,000 molecular weight away from the N terminus.  相似文献   

15.
The core protein of high buoyant density proteoglycans synthesized by chondrocytes in stage 24 chick limb bud mesenchymal cell cultures was cleaved with cyanogen bromide to produce 17 resolvable peptides on sodium dodecyl sulfate-polyacrylamide slab gels. Of these peptides, 10 appear to originate from the chondroitin sulfate-rich region, 2 appear to be derived from the keratan sulfate-rich region, and 5 seem to be derived from the hyaluronic acid-binding region. The peptides from the chondroitin sulfate-rich region are almost all large (200 to 64 kDa). In contrast, the peptides from the keratan sulfate-rich and hyaluronic acid-binding regions are relatively small (47 to 12 kDa). One peptide from the hyaluronic acid-binding region appears to contain mannose-rich N-linked oligosaccharides as inferred from its observed binding by concanavalin A. A different hyaluronic acid-binding region peptide and one of the keratan sulfate-rich peptides were shown to contain disulfide bonds and therefore may be involved in contributing to the tertiary structure of the hyaluronic acid-binding region. Based on these observations, a map of the chick chondrocyte proteoglycan core protein has been constructed.  相似文献   

16.
Rat chondrosarcoma proteoglycan aggregate samples were digested with the protease clostripain (from Clostridium histolyticum) for various times. The progress of digestion was studied by Sepharose 2B chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After complete digestion, the complex of hyaluronic acid-binding region, link protein, and hyaluronic acid was separated from the chondroitin sulfate-peptide clusters released by the enzyme. In this limit complex, the Mr of the link protein was 42,000, slightly smaller than the Mr of 45,000 observed for intact link protein. The chondroitin sulfate-peptides contained an average of about seven to eight polysaccharide chains per peptide and, after chondroitinase ABC digestion, were found to consist of two size classes of peptides. By comparison, chondroitin sulfate-peptides isolated from trypsin digests contained four to five chains per peptide and contained primarily the smaller size class of peptides. At early digestion times with clostripain, several distinct molecular weight intermediates containing hyaluronic acid-binding sites were identified on sodium dodecyl sulfate-polyacrylamide gels. These intermediates, with Mr, values of about 125,000, 100,000, and 85,000, decreased with increasing digestion time to yield a limit polypeptide (Mr = 67,000). Procedures are described for purifying this limit polypeptide and the link protein for further characterization. The results indicate that clostripain can be used to fragment proteoglycan molecules selectively to define different functional regions for study.  相似文献   

17.
The Alzheimer's amyloid beta protein is derived from a family of membrane glycoproteins termed amyloid precursor proteins (APP). Here we show that APP exists as the core protein of a chondroitin sulfate (CS) proteoglycan, ranging in apparent molecular size from 140 to 250 kDa, secreted by glial cell line C6. After partial purification on ion-exchange and gel chromatography, the secreted APP proteoglycan was recognized on Western blots by several antibodies specific to different regions of APP. Chondroitinase AC or ABC treatment of our samples completely eliminated the high molecular weight proteoglycan with a concomitant increase in the APP protein. This digested product reacted with an anti-stub antibody which recognizes 4-sulfated disaccharide. Sequencing of the N terminus of the core protein of this CS proteoglycan yielded 18 residues identical to the N terminus sequence of the mature APP. Quantitative analysis showed that, in this cell line, about 90% of the secreted nexin II form of APP occurs in the proteoglycan form, suggesting that the CS chains have a role in the biological function of this protein. The close proximity of two consensus CS attachment sites to both the N terminus of the amyloid beta protein and the secretase cleavage site, suggests that the CS chains may affect the proteolysis of APP and production of the amyloid beta protein.  相似文献   

18.
Intermediary gel immunoelectrophoresis was used to show that purified aggregating cartilage proteoglycans from 2-year-old steers contain two distinct populations of molecules and that only one of these is immunologically related to non-aggregating cartilage proteoglycans. The two types of aggregating proteoglycans were purified by density-gradient centrifugation in 3.5M-CsCl/4M-guanidinium chloride and separated by zonal rate centrifugation in sucrose gradients. The higher-buoyant-density faster-sedimenting proteoglycan represented 43% of the proteoglycans in the extract. It had a weight-average Mr of 3.5 X 10(6), did not contain a well-defined keratan sulphate-rich region, had a quantitatively dominant chondroitin sulphate-rich region and contained 5.9% protein and 23% hexosamine. The lower-buoyant-density, more slowly sedimenting, proteoglycan represented 15% of the proteoglycans in the extract. It had a weight-average Mr of 1.3 X 10(6), contained both the keratan sulphate-rich and the chondroitin sulphate-rich regions and contained 7.3% protein and 23% hexosamine. Each of the proteoglycan preparations showed only one band on agarose/polyacrylamide-gel electrophoresis. The larger proteoglycan had a lower mobility than the smaller. The distribution of chondroitin sulphate chains along the chondroitin sulphate-rich region was similar for the two types of proteoglycans. The somewhat larger chondroitin sulphate chains of the larger proteoglycan could not alone account for the larger size of the proteoglycan. Peptide patterns after trypsin digestion of the proteoglycans showed great similarities, although the presence of a few peptides not shared by both populations indicates that the core proteins are partially different.  相似文献   

19.
Abstract: The formation and maintenance of functionally specific neuronal networks may depend on specific proteoglycans localized to the surface membranes of a subset of neurons. Monoclonal antibody (MAb) 6A2 labeled a distinct subset of CNS neurons: the somas and proximal dendrites of cells making up the spinocerebellar and reticular systems. These pathways contribute to proprioceptive and exteroceptive functions. Ultrastructurally, MAb 6A2 immunoreactivity was distributed focally along the cell surface membranes and the adjacent extracellular space. On western blots of immunoaffinity-purified preparations from cerebellar homogenates, a major, broad band of ∼400 kDa is labeled by MAb 6A2. Increased electrophoretic mobility of the purified antigen after digestion with chondroitinase ABC and keratanase suggests that the antigen is a proteoglycan bearing chondroitin sulfate and keratan sulfate glycosaminoglycans. Unsulfated N -acetyl- galactosamine residues linked to unsaturated uronic acid constituted the initial disaccharide in the chondroitin sulfate glycosaminoglycan chains. N- and O-linked oligosac- charides on the core protein were detected by the biotinylated lectins wheat germ agglutinin and Jacalin, respectively, and by MAb anti-HNK-1. Lyase and glycosidase digests result in a 280-kDa band. This proteoglycan, somataglycan-S, may provide a key to the role of glycoconjugates in determining neuronal diversity and system specificity.  相似文献   

20.
Purified proteoglycans extracted from pig laryngeal cartilage in 0.15 M-NaCl and 4 M-guanidinium chloride were analysed and their amino acid compositions determined. Selective modification of amino acid residues on the protein core confirmed that binding to hyaluronate was a function of the protein core, and was dependent on disulphide bridges, intact arginine and tryptophan residues, and epsilon-amino groups of lysine. Fluorescence measurement suggested that tryptophan was not involved in direct subsite interactions with the hyaluronate. The polydispersity in size and heterogeneity in composition of the aggregating proteoglycan was compatible with a structure based on a protein core containing a globular hyaluronate-binding region and an extended region of variable length also containing a variable degree of substitution with chondroitin sulphate chains. The non-aggregated proteoglycan extracted preferentially in 0.15 M-NaCl, which was unable to bind to hyaluronate, contained less cysteine and tryptophan than did other aggregating proteoglycans and may be deficient in the hyaluronate-binding region. Its small average size and low protein and keratan sulphate contents suggest that it may be a fragment of the chondroitin sulphate-bearing region of aggregating proteoglycan produced by proteolytic cleavage of newly synthesized molecules before their secretion from the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号