首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has shown that increased endocytotic and lysosomal activities occur in the endplate region of denervated skeletal muscle fibres. This, however, does not engage all fibres of a muscle at a given time after denervation. The present study was carried out in order to determine if both type I (slow) and type II (fast) muscle fibres can react to denervation by increased endocytotic and lysosomal activities. Uptake of horseradish peroxidase as a marker for endocytosis was studied in conjunction with acid phosphatase staining for lysosomal activity in type I and type II fibres of the denervated mouse hemidiaphragm. Fibre typing was performed using a monoclonal antibody against fast skeletal myosin and by adenosine triphosphatase staining. The results show that increased endocytosis and lysosomal activation occur in both type I and type II fibres after denervation.  相似文献   

2.
Sternomandibularis muscles were removed from slaughtered adult cattle immediately after exsanguination. On the basis of the density of diformazan granules deposited by a reaction for NAD tetrazolium reductase, approximately equal numbers of muscle fibres with high and low mitochondrial content were identified in serial frozen sections. In samples taken immediately after exanguination both types of muscle fibres exhibited glycogen phosphorylase activity and were stained equally by the periodic acid-Schiff (PAS) reaction for glycogen. In unstimulated muscle samples 1 hr postmortem, no loss of PAS staining was detected. In electrically stimulated samples 1 hr postmortem, large numbers of muscle fibres with a low mitochondrial content but only some muscle fibres with a high mitochondrial content became PAS-negative. Stimulation-induced glycogen depletion was completely prevented by the interfaicular injection of magnesium sulphate solution. In unstimulated samples between 5 and 24 hr postmortem, some muscle fibres with a high mitochondrial content but only a few muscle fibres with a low mitochondrial content became PAS-negative.  相似文献   

3.
Adult, untrained NMRI mice were exhausted on a motor-driven treadmill by an intermittent-type running programme. Serial cryostate sections for the staining of NADH-tetrazolium reductase, beta-glucuronidase, beta-N-acetylglucosaminidase, and beta-glycerophosphatase activities and for making hematoxylin-eosin staining were cut from m. quadriceps femoris 1, 2, 3, 5, 7, and 15 days after physical exhaustion. A strong increase in the activities of beta-glucuronidase and beta-N-acetylglucosaminidase was observed 7 days after exhaustion and the activity changes, which were similar for the both glycosidases, were more prominent in the highly oxidative red compared to less oxidative white fibres. Activity granules were more numerous in the perinuclear than the interfibrillar area of red fibres. Spots were arranged like longitudinal chains between myofibrils. Activity in connective tissue was usually observed only in animals exhausted 3--7 days earlier. Simultaneous activity in fibres exceeded that in connective tissue. beta-Glycerophosphatase activity was not, by the method used, seen in histologically "healthy" or normal-looking fibres. In samples taken 2--5 days after exhaustion some degenerating and necrotic fibres were observed. Inflammatory reaction was also observed being at its strongest five days after loading when mononuclear cells were seen inside necrotic fibres. The number of regenerating muscle cells was most abundant 7 days after exhaustion. It is suggested that temporary hypoxia, which accompanies exhaustive physical exercise in skeletal muscle, upsets the energy metabolism and homeostasis of fibres and causes the observed histological and histochemical alterations, which possess features typical of both lethal and sublethal acute cell injury.  相似文献   

4.
The effects of continuous elongation of skeletal muscles were studied on six sheep who underwent a lengthening osteotomy of the right tibia. Open muscle biopsies were taken from the biceps femoris muscle preoperatively (Group A), after 5 weeks of bone distraction (Group B) and after another 5 weeks without further distraction (Group C). The size and distribution of type 1 (slow-twitch) and type 2 (fast-twitch) muscle fibres were determined from sections stained for myofibrillar ATPase activity. All sections were also evaluated by light microscopy, especially with regard to myopathic changes. The type 2 fibres showed a significant decrease in size from group A to B and from group B to C. The reduction in fibre size from group A to C was 44.2%. The type 1 fibres, on the other hand, showed no significant differences in mean fibre size between the groups. However, there were considerable individual variations in type 1 fibre size between the groups. The distribution of both fibre types was similar in groups A and B (appr. 17% type 1 fibres) whereas the relative number of type 1 fibres was reduced to 12.4% in group C (P less than 0.01). Myopathic changes, i.e. muscle fibre necroses, were not seen in any of the groups. It is concluded that the type 2 fibre atrophy is mainly caused by muscular inactivity during the postoperative period, but an additional effect of continuous stretching of the muscle cannot be excluded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The aim of this investigation was to determine whether 10 weeks of three different types of training can alter the myosin heavy chain (MyHC) composition of the trapezius muscle. Twenty-one women were randomly assigned to three training groups that performed strength (n=9), endurance (n=7) or coordination training (n=5). Pre and post biopsies were taken from the upper part of the descending trapezius muscle and were analysed for MyHC isoform content using 5% gel electrophoresis. In addition, we have studied the expression of embryonic and neonatal MyHCs using double-immunofluorescence staining. In the strength-trained group, there was a significant increase in the amount of MyHC IIA and a significant decrease in the amount of MyHC IIB and MyHC I. In the endurance group, there was a significant decrease in the amount of MyHC IIB. MyHC composition in the coordination group was not altered. Following the training period, myotubes and individual small-sized muscle fibres were observed in the strength and endurance trained groups. These structures were stained with the markers for early myogenesis (MyHC embryonic and neonatal). These data suggest that specific shifts in MyHC isoforms occur in the trapezius muscle following strength and endurance training. The presence of small-sized muscle fibres expressing the developmental isoforms of MyHC suggests that strength and endurance training induced the formation of new muscle fibres. Accepted: 31 March 1999  相似文献   

6.
Summary Cryostat sections from rat gracilis muscles were incubated with different biotinylated lectins: Con A (Concanavilin A), WGA (Wheat germ agglutinin), SBA (soybean agglutinin), GS I and GS II (Griffonia simplicifolia agglutinin), LCA (Lens culinaris agglutinin), PNA (peanut agglutinin) and PSA (Pisum sativum agglutinin). The sections were subsequently treated with alkaline phosphatase conjugated avidin. The lectin binding sites were visualized after incubation in substrate media containing: (1) 5-bromo-4-chloro indoxyl phosphate and Nitro Blue tetrazolium or copper sulphate; (2) naphthol AS-MX phosphate or naphthol AS-BI phosphate and various types of diazonium salts; (3) -naphthylphosphate and Fast Blue BB; (4) -glycerophosphate according to the method of Gomori. The results obtained with the alkaline phosphatase methods were compared with those seen with a streptavidin-horseradish peroxidase procedure. Several chromogen protocols for visualizing alkaline phosphatase activity showed differences in the ability to detect lectin binding sites. A sarcoplasmic reaction was evident for Con A, GS II, WGA, LCA, and PSA after incubation in the indoxyl phosphate medium. Sarcoplasmic reaction for GS II was also noticed after incubation with naphthol AS-MX Fast Blue BB and -glycerophosphate. The latter substrate also gave rise to a sarcoplasmic Con A reaction. With the indoxylphosphate tetrazolium salt method some muscle fibres showed a very strong intracellular reaction after incubation with Con A and GS II while the staining intensity was weak in other fibres. The same muscle fibres were stained with PAS. No sarcoplasmic reactions were observed with either naphthol phosphate media or with the diaminobenzidine peroxidase methods. Further, the staining of the muscle fibre periphery, connective tissue, and capillaries was intensified using the indoxyl method. The indoxylphosphate-tetrazolium salt method seems to be suitable for future investigations of lectin binding sites in muscle sections.  相似文献   

7.
The expression of myosin heavy chain isoforms in muscle spindle fibres has been the subject of a number of immunocytochemical studies, some of them with discordant results. In order to assess whether these discrepancies are due to differences in the specificity and sensitivity of the antibodies used, we have compared the reactivity of rat muscle spindle fibres to two pairs of antibodies presumed to be directed against slow tonic (ALD 19 and ALD 58) and neonatal (NN5) and neonatal/fast (MF30) myosin heavy chains. Adult, developing and neonatally de-efferented muscle spindles from the rat hind limb muscles were studied in serial cross-sections processed for the peroxidase-antiperoxidase method. Important differences in the staining profiles of intrafusal fibres were noted when ALD 19 and ALD 58 were compared. ALD 19 stained the muscle spindle precursors from the seventeenth day in utero, whereas ALD 58 only did so by the twentieth day of gestation. In adult spindles ALD 19 stained the nuclear bag1 fibres along their entire length, whereas ALD 58 did not stain these fibres towards their ends. ALD 19 stained the nuclear bag2 fibres along the A, B and inner C region, but ALD 58 stained these fibres only in the A and the inner B regions. ALD 19 stained some nuclear chain fibres along a short equatorial segment, whereas ALD 58 did not stain the nuclear chain fibres at all. NN5 stained the nascent nuclear bag1 and chain fibre precursors at earlier stages of development than MF30. Clear differential staining between primary and secondary generation of both extra- and intrafusal myotubes was seen with NN5, whereas MF30 stained all myotubes alike. However, in postnatal spindles, MF30 was a very good negative marker of nuclear bag1 fibres. The staining profile of the adult fibres with NN5 and MF30 was rather similar. The staining pattern of neonatally de-efferented bag fibres obtained with ALD 19 and ALD 58 was practically identical and it differed from that of control spindles, confirming that motor innervation participates in the regulation of the expression of slow tonic MHC along the length of the nuclear bag2 fibres, as we have previously shown with ALD 19. The distinct staining patterns obtained with ALD 19 versus ALD 58 and with NN5 versus MF30 reflect differences in antibody sensitivity and specificity. These differences account, in part, for the discrepancies in the results of previous studies on muscle spindles, published by Kucera and Walro using ALD 58 and MF30, and by us using ALD 19 and NN5.  相似文献   

8.
High force eccentric muscle contractions can result in delayed onset muscle soreness (DOMS), prolonged loss of muscle strength, decreased range of motion, muscle swelling and an increase of muscle proteins in the blood. At the ultrastructural level Z-line streaming and myofibrillar disruptions have been taken as evidence for muscle damage. In animal models of eccentric exercise-induced injury, disruption of the cytoskeleton and the sarcolemma of muscle fibres occurs within the first hour after the exercise, since a rapid loss of staining of desmin, a cytoskeletal protein, and the presence of fibronectin, a plasma and extracellular protein, are observed within the muscle fibres. In the present study, biopsies from subjects who had performed different eccentric exercises and had developed DOMS were examined. Our aim was to determine whether eccentric exercise leading to DOMS causes sarcolemmal disruption and loss of desmin in humans. Our study shows that even though the subjects had DOMS, muscle fibres had neither lost staining for desmin nor contained plasma fibronectin. This study therefore does not support previous conclusions that there is muscle fibre degeneration and necrosis in human skeletal muscle after eccentric exercise leading to DOMS. Our data are in agreement with the recent findings that there is no inflammatory response in skeletal muscle following eccentric exercise in humans. In combination, these findings should stimulate the search for other mechanisms explaining the functional and structural alterations in human skeletal muscle after eccentric exercise.  相似文献   

9.
S-myotrophin is a newly discovered muscle growth factor. Effects of crude S-myotrophin injection on the growth and morphology of skeletal muscle of normal, ScN and mdx mice were investigated in the present study. Total dose of crude S-myotrophin was 100 microg (100 microg protein/ml x 50 microl x 20 times). In the case of normal mice (Sea:ddY), body weight and the weight of M. gluteus major of crude S-myotrophin injected mice was significantly heavier than that of control (PBS-injected) mice after 5 weeks' feeding. Antibody staining of laminin and dystrophin showed clear sarcolemmal and basement membrane structure surrounding each muscle fibre. The numbers of muscle fibres per 100 microm(2) was less in crude S-myotrophin-injected normal mice than in PBS-injected mice. Quite similar observations as in the case of normal mice were obtained in the case of ScN mice having heterogeneous gene of dystrophin. In the case of mdx mice, body weight and the weight of M. gluteus major of crude S-myotrophin injected mdx mice was significantly heavier than that of PBS-injected mdx mice. Antibody staining of laminin showed almost intact structure of the basement membrane containing laminin even in skeletal muscle of mdx mice subjected to crude S-myotrophin injection, while irregular and incompletely developed structure of muscle fibres or necrosis were observed in muscle fibres of PBS-injected mdx mice. In spite of crudeness of the preparation, the present animal experiments indicate that S-myotrophin has a strong growth promoting activity of muscle cells of normal and dystrophic mice.  相似文献   

10.
The effect of ruthenium red (RR) on the electrical and contractile responses, membrane Ca currents, staining patterns of the external and internal membrane system were tested in intact and mechanically skinned muscle fibres of the crayfish Astacus fluviatilis. The following results were obtained: 1. Depression of the contractile responses following membrane depolarization (twitch, tetanus, potassium contractures). 2. Caffeine contractures were unaffected in intact (100 mumol/l - 1 mmol/l RR) and blocked in skinned fibres (30 mumol/l RR). 3. Mechanical threshold and mechanical latency were increased and/or prolonged. 4. The rate of depolarization of the action potentials (AP) was decreased and decremental spread of AP was recorded. 5. Both fast and slowly inactivating Ca ionic currents were decreased and the time constants of activation (tau(m] and inactivation (tau(h] were prolonged after RR (100 mumol/l) pretreatment. 6. The penetration of RR into the T-system was inversely related to its binding to the sarcolemma. The depression of depolarization-induced contractions was most pronounced in fibres with unstained sarcolemma and stained T-tubules. In intact fibres, neither terminal cisternae nor other elements of SR were stained. On the contrary, all internal membrane structures were stained in skinned fibres. There was a gradient of staining intensity from surface toward the interior.  相似文献   

11.
Summary Previous work has shown that increased endocytotic and lysosomal activities occur in the endplate region of denervated skeletal muscle fibres. This, however, does not engage all fibres of a muscle at a given time after denervation. The present study was carried out in order to determine if both type I (slow) and type II (fast) muscle fibres can react to denervation by increased endocytotic and lysosomal activities. Uptake of horseradish peroxidase as a marker for endocytosis was studied in conjunction with acid phosphatase staining for lysosomal activity in type I and type II fibres of the denervated mouse hemidiaphragm. Fibre typing was performed using a monoclonal antibody against fast skeletal myosin and by adenosine triphosphatase staining. The results show that increased endocytosis and lysosomal activation occur in both type I and type II fibres after denervation.  相似文献   

12.
Abstract Characteristics of reptilian muscle fibres were investigated in the biceps brachii of the African chameleon, Chamaeleo senegalensis. Fibres were classified as slow and fast. These types of fibre were distinguished on the basis of histochemical staining for myofibrillar ATPase (mATPase). Fast fibres stained dark for mATPase while slow fibres stained light. The patterns of innervation of slow and fast fibres were investigated by staining nerve endings for acetylcholinesterase activity. Slow fibres have a pattern of multiple innervation, whereas fast fibres are associated with individual endplates. The organization of the myofibrils and the sarcoplasmic reticulum in slow muscle fibres from the chameleon biceps brachii was compared with that in fast fibres. Slow fibres lacked an M-line and the Z-lines were uneven. They had fibrils that were not clearly separated from each other and the sarcoplasmic reticulum was poorly developed. These features are in sharp contrast to those of fast fibres which had straight Z-lines, clear M-lines and well-developed sarcoplasmic reticulum.  相似文献   

13.
Summary The present work was undertaken to determine by immunocytochemical methods which of the putative enteric neurotransmitters are contained in axons supplying the guinea-pig taenia coli and what proportion of axons is accounted for by the presence of these substances. Numerous fibres displayed immunoreactivity for dynorphin (DYN), enkephalin (ENK), -aminobutyric acid (GABA), nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP), but, in contrast to other gut regions, fibres showing immunoreactivity for gastrin-releasing peptide, galanin and neuropeptide Y were rare in the taenia. Fibres reactive for calbindin, calcitonin gene-related peptide, cholecystokinin, 5-hydroxytryptamine and somatostatin were also rare. Tyrosine hydroxylase-like immunoreactivity (TH-LI) was present in numerous fibres that disappeared after extrinsic denervation, a procedure that did not detectably affect any of the other major groups of fibres. Simultaneous staining of extrinsically denervated preparations revealed that SP-LI and VIP-LI were located in separate fibres, and ultrastructural studies showed these to be 58% and 33% of intrinsic fibres supplying the muscle. Immunoreactivity for the general marker, neuron-specific enolase, was located in 95–98% of axons. ENK-LI and DYN-LI were in the same axons, and similar proportions of the fibres with either SP-LI or VIP-LI, about 85%, contained immunoreactivity for ENK and DYN. All VIP-LI fibres, but no SP-LI fibres, were reactive for NOS. The results imply that the taenia of the guinea-pig caecum is innervated by two major groups of enteric neurons: (i) excitatory neurons that contain ACh, SP, other tachykinins, and, in most cases, DYN-LI and ENK-LI; and (ii) inhibitory neurons that contain NOS-LI, VIP-LI, in most cases, the two opioids and, quite probably, ATP as a transmitter. GABA-LI is contained in a smaller population of intrinsic axons. Even though the taenia represents one of the simplest tissues for examining transmission from enteric neurons to intestinal muscle, it shares some of the complexity of other regions, in that four major axon types supply the muscle and both the enteric excitatory and enteric inhibitory neurons contain multiple transmitters.  相似文献   

14.
Summary Subgroups of fast twitch (FT) muscle fibres were identified by histochemical techniques on muscle samples of m. quadriceps femoris from six male and six female subjects, who had been assigned to three groups; untrained, active and well trained (endurance runners). Slow twitch (ST) and FT fibres were initially identified using the histochemical stain for myofibrillar ATPase, preincubated at pH 10.3 and 4.3. Three people, working independently, then identified the subgroups FTa and FTb on the basis of the staining intensity for only one of the following reactions: -glycerophosphate dehydrogenase, -GPD; NADH tetrazolium reductase, NADH-TR; and myofibrillar ATPase preincubated at pH 4.6, ATPase (4.6). FTa fibres were clearly distinguished from the darker staining FTb fibres using the ATPase (4.6) reaction. Differences in the staining within the FT fibres using the -GPD and NADH-TR reactions were more subtle, and differences between subject groups were evident. The percentage of FTa fibres was overestimated for the untrained and underestimated for the well trained subjects using NADH-TR. With the -GPD stain the percentage of FTa fibres was generally underestimated. When the data for all three stains were compared, only 27% of the FT fibres were placed in the same subgroups. These results demonstrate that the subgrouping of FT fibres in man is more reliable using the differences in pH sensitivity for the myofibrillar ATPase reaction compared to histochemical reactions for oxidative or glycolytic enzymes.  相似文献   

15.
Summary Binding sites for three fucose specific lectins, Aleuria aurantia agglutinin (AAA), Lotus tetragonolobus agglutinin (LTA) and Ulex europeus I agglutinin (UEA I), were investigated in sections from normal human and rat muscles, in muscle from patients with Duchenne muscular dystrophy (DMD) and in denervated and devascularized rat muscle. In normal human and rat muscle AAA detected fucosylated glycocompounds in the sarcoplasm, sarcolemma, interfibre connective tissue and vascular structures. In normal human muscle addition of fucose to the AAA incubation medium or treatment of the sections with formaldehyde followed by periodic oxidation before lectin incubation strongly inhibited the staining at all sites other than endothelial cells. In normal rat muscle the same staining procedures strongly inhibited the AAA binding at all sites other than the sarcolemma. Incubation with LTA resulted in a diffuse reaction around the vascular structures in rat muscle, while in human muscle a moderate, homogeneous staining was present in all muscle fibres. Treatment of the sections with formaldehyde and periodic acid before incubation with LTA resulted in strongly labelled muscle capillaries in both human and rat muscle. The only elements in the muscle tissues that were stained with UEA I were human endothelial cells. In denervated and devascularized rat muscle incubation with AAA revealed a novel fucose expression that appeared intracellularly in some necrotic fibres. The AAA-positive fucose residues in the sarcolemma of normal muscle fibres that were resistant to periodic acid oxidation could not be shown by AAA in denervated muscle. In DMD muscle a cryptic sarcolemmal fucose expression could be shown with AAA. It is suggested that both the sarcoplasm and sarcolemma of diseased muscle fibres show altered fucose expression.  相似文献   

16.
The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.  相似文献   

17.
The immunohistochemical location of cathepsin L in rabbit soleus, plantaris and psoas muscles was investigated using the peroxidase-anti-peroxidase (PAP) technique. The amount of enzyme detected varied according to the fibre type, which were identified by histochemical staining of serial sections for succinate dehydrogenase and alkali-stable myosin ATPase. In the three muscles studied labelling was strongest in the highly oxidative fibres and weaker in the other fibre types with least staining in the fast white fibres. Immunoreactive cathepsin L appeared to be most concentrated at the periphery of muscle fibres, especially near to the nuclei, although some staining was seen throughout the fibres.  相似文献   

18.
Samples taken from the middle gluteal muscle of 95 untrained adult horses of different ages and sex were subjected to histochemical analysis using the myosin adenosine triphosphatase (m-ATPase) and nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) staining techniques. Fibres were classified into types I, IIA and IIB according to m-ATPase activity after preincubation at pH 4.4. The percentage of FT (Fast-Twitch Glycolytic) fibres and the proportion of IIB fibres with "high" and "low" oxidative capacity were determined in serial sections stained for NADH-TR. Statistical analysis revealed a significantly higher proportion of IIB fibres than FT fibres (P less than 0.001), though both percentages were correlated. Thus, 72.2 +/- 17.6% of type IIB fibres showed low oxidative capacity, but the remaining 27.8 +/- 17.6% showed high aerobic potential, and thus did not correspond to FT fibres. These results confirm that the contractile capacity of a muscle fibre does not determine its oxidative profile. The different types of muscle fibre should thus be classified solely according to m-ATPase activity, since this characteristic is related to the molecular structure of contractile proteins. Oxidative capacity should be assessed separately, and not be used as a criterion for fibre classification in horses.  相似文献   

19.
T Soukup 《Histochemistry》1976,47(1):43-57
Morphological, histochemical and ultrastructural characteristics of intrafusal fibre types were studied in rat muscle spindles. The existence of three intrafusal fibre types, namely the typical bag, the intermediate bag and the chain fibres was confirmed. Intrafusal fibres differ in diameter, length and number of nuclei in the equatorial zone. Histochemically, typical bag fibres exhibit both alkali- and acid-stable ATPase activity and low SDH activity. Intermediate bag fibres possess low alkali-stable ATPase activity; after acid-preincubation, however, they have low activity only in the juxtaequatorial region, whereas in the polar zones they exhibit high acid-stable ATPase activity. The SDH activity varies from moderate to high. The chain fibres exhibit high alkali-stable and low acid-stable ATPase and high SDH activity in the extensor digitorum longus muscle, whereas in the soleus muscle the acid-stable ATPase activity varies from a low one to a high one, either among individual chain fibres in one spindle, and/or repeatedly along the fibre length. Since there are regional differences in morphological characteristics and in staining properties of intrafusal fibres, a reliable identification of intrafusal fibre types can only be achieved by an analysis of serial sections.  相似文献   

20.
The aim of this study was to introduce a combined fluorescent staining that clearly demonstrates capillaries and distinguishes them from the basal lamina of muscle fibres in skeletal muscle tissue. The triple staining with CD31, Griffonia (Bandeira) simplicifolia lectin (GSL I) and laminin efficiently distinguishes vascular endothelium from the basal lamina of skeletal muscle fibres in physiological and pathological conditions. The presented triple staining method has several advantages, which facilitate quantitative analysis of the capillary network, and its relation to individual muscle fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号