首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we investigated the release of Ca2+ in brain microsomes after Ca2+ loading by the Ca2+-ATPase or by the Na+/Ca2+ exchanger. The results show that in microsomes loaded with Ca2+ by the Ca2+-ATPase, Ins(1,4,5)P3 (5 μM) release 21±2% of the total Ca2+ accumulated, and that in the microsomes loaded with Ca2+ by the Na2+/Ca2+ exchanger, Ins(1,4,5)P3 released 28±3% of the total Ca2+ accumulated. These results suggest that receptors of Ins(1,4,5)P3 may be co-localized with the Na2+/Ca2+ exchanger in the endoplasmic reticulum membrane or that there are Ins(1,4,5)P3 receptors in the plasma membrane where the Na2+/Ca2+ exchanger is normally present, or both. We also found that Ins(1,4,5)P3 inhibited the Ca2+-ATPase by 33.7%, but that it had no significant effect on the Na2+/Ca2+ exchanger.  相似文献   

2.
The relationship between the agonist-sensitive Ca2+ pool and those discharged by the Ca2+-ATPase inhibitor thapsigargin (TG) were investigated in canine tracheal smooth muscle cells (TSMCs). In fura-2-loaded TSMCs, 5-hydroxytryptamine (5-HT) stimulated a rapid increase in intracellular Ca2+ ([Ca2+]i), followed by a sustained plateau phase that was dependent on extracellular Ca2+. In such cells, TG produced a concentration-dependent increase in [Ca2+]i, which remained elevated over basal level for several minutes and was substantially attenuated in the absence of extracellular Ca2+. Application of 5-HT after TG demonstrated that the TG-sensitive compartment partly overlapped the 5-HT-sensitive stores. Pre-treatment of TSMCs with TG significantly inhibited the increase in [Ca2+]i induced by 5-HT in a time-dependent manner. Similar results were obtained with two other Ca2+-ATPase inhibitors, cyclopiazonic acid and 2,5-di-t-butylhydroquinone. Although these inhibitors had no effect on phosphoinositide hydrolysis, Ca2+-influx was stimulated by these agents. These results suggest that depletion of the agonist-sensitive Ca2+ stores is sufficient for activation of Ca2+ influx. Some characteristics of the Ca2+-influx activated by depletion of internal Ca2+ stores were compared with those of the agonist-activated pathway. 5-HT-stimulated Ca2+ influx was inhibited by La3+, membrane depolarisation, and the novel Ca2+-influx blocker 1-{β-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl}-1H-imidazole hydrochloride (SKF96365). Likewise, activation of Ca2+ influx by TG also was blocked by La3+, membrane depolarisation, and SKF96365. These results suggest that (1) in the absence of PI hydrolysis, depletion of the agonist-sensitive internal Ca2+ stores in TSMCs is sufficient for activation of Ca2+ influx, and (2) the agonist-activated Ca2+ influx pathway and the influx pathway activated by depletion of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool are indistinguishable.  相似文献   

3.
Reconstituted Na+,K+-ATPase from either pig kidney or shark rectal glands was phosphorylated by cAMP dependent protein kinase, PKA. The stoichiometry was 0.9 mole Pi/mole -subunit in the pig kidney enzyme and 0.2 mol Pi/mol -subunit in the shark enzyme. In shark Na+,K+-ATPase PKA phosphorylation increased the maximum hydrolytic activity for cytoplasmic Na+ activation and extracellular K+ activation without affecting the apparent Km values. In contrast, no significant functional effect after PKA phosphorylation was observed in pig kidney Na+,K+-ATPase.  相似文献   

4.
Ca2+ mobilization elicited by simulation with brief pulses of high K + were monitored with confocal laser scanned microscopy in intact, guinea pig cardiac myocytes loaded with the calcium indicator fluo-3. Single wavelength ratioing of fluorescence images obtained after prolonged integration times revealed non-uniformities of intracellular Ca2+ changes across the cell, suggesting the presence of significant spatial Ca2+ gradients. Treatment with 20 μM ryanodine, an inhibitor of Ca2+ release from the SR, and 10 μM verapamil, a calcium channel blocker, reduced by 42% and 76% respectively the changes in [Ca2+]i elicited by membrane depolarization. The overall spatial distribution of [Ca2+]i changes appeared unchanged. Ca2+ transients recorded in the presence of verapamil and ryanodine (about 20% of the size of control responses), diminished in the presence of 50 μM 2-4 Dichlorbenzamil (DCB) or 5 mM nickel, two relatively specific inhibitors of the exchange mechanism. Conversely, when the reversal potential of the exchange was shifted to negative potentials by lowering [Na+]0 or by increasing [Na+]i by treatment with 20 μM monensin, the amplitude of these Ca2+ transients increased. Ca2+ transients elicited by membrane depolarization and largely mediated by reverse operation of Na+-Ca2+ exchange could be recorded in the presence of ryanodine, verapamil and monensin. These findings suggest that in intact guinea pig cardiac cells, Ca2+ influx through the exchange mechanism activated by a membrane depolarization in the physiological range can be sufficient to play a significant role in excitation-contraction coupling.  相似文献   

5.
Upon glucose elevation, pancreatic beta-cells secrete insulin in a Ca2+-dependent manner. In diabetic animal models, different aspects of the calcium signaling pathway in beta-cells are altered, but there is no consensus regarding their relative contributions to the development of beta-cell dysfunction. In this study, we compared the increase in cytosolic Ca2+ ([Ca2+]i) via Ca2+ influx, Ca2+ mobilization from endoplasmic reticulum (ER) calcium stores, and the removal of Ca2+ via multiple mechanisms in beta-cells from both diabetic db/db mice and nondiabetic C57BL/6J mice. We refined our previous quantitative model to describe the slow [Ca2+]i recovery after depolarization in beta-cells from db/db mice. According to the model, the activity levels of the two subtypes of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump, SERCA2 and SERCA3, were severely down-regulated in diabetic cells to 65% and 0% of the levels in normal cells. This down-regulation may lead to a reduction in the Ca2+ concentration in the ER, a compensatory up-regulation of the plasma membrane Na+/Ca2+ exchanger (NCX) and a reduction in depolarizationevoked Ca2+ influx. As a result, the patterns of glucosestimulated calcium oscillations were significantly different in db/db diabetic beta-cells compared with normal cells. Overall, quantifying the changes in the calcium signaling pathway in db/db diabetic beta-cells will aid in the development of a disease model that could provide insight into the adaptive transformations of beta-cell function during diabetes development.  相似文献   

6.
Mechanical compression of cartilage is associated with a rise in the interstitial osmotic pressure, which can alter cell volume and activate volume recovery pathways. One of the early events implicated in regulatory volume changes and mechanotransduction is an increase of intracellular calcium ion ([Ca2+]i). In this study, we tested the hypothesis that osmotic stress initiates intracellular Ca2+ signaling in chondrocytes. Using laser scanning microscopy and digital image processing, [Ca2+]i and cell volume were monitored in chondrocytes exposed to hyper-osmotic solutions. Control experiments showed that exposure to hyper-osmotic solution caused significant decreases in cell volume as well as transient increases in [Ca2+]i. The initial peak in [Ca2+]i was generally followed by decaying oscillations. Pretreatment with gadolinium, a non-specific blocker of mechanosensitive ion channels, inhibited this [Ca2+]i increase. Calcium-free media eliminated [Ca2+]i increases in all cases. Pretreatment with U73122, thapsigargin, or heparin (blockers of the inositol phosphate pathway), or pertussis toxin (a blocker of G-proteins) significantly decreased the percentage of cells responding to osmotic stress and nearly abolished all oscillations. Cell volume decreased with hyper-osmotic stress and recovered towards baseline levels throughout the duration of the control experiments. The peak volume change with 550 mOsm osmotic stress, as well as the percent recovery of cell volume, was dependent on [Ca2+]i. These findings indicate that osmotic stress causes significant volume change in chondrocytes and may activate an intracellular second messenger signal by inducing transient increases in [Ca2+]i.  相似文献   

7.
The Mg2+-dependent H+-ATPase activity of a sealed microsomal vesicle fraction isolated from corn (Zea mays L.) roots appears to be controlled by a phosphorylation-dephosphorylation cycle. Phosphorylation of the microsomal fraction is carried out by a Ca2+/calmodulin (CaM)-stimulated process. The H+-ATPase activity decreases with increasing phosphorylation of the membranes and becomes only slightly uncoupled by ionophores and less inhibited by dicyclohexylcarbodiimide (DCCD), diethylstilbestrol (DES), NO3 and vanadate. The inhibitory effect of phosphorylation is greater on the NO3-sensitive H+-ATPase activity than on the vanadate-sensitive activity. Restoration of H+-ATPase activity is achieved by allowing the phosphorylated membranes to dephosphorylate either in the absence or presence of exogenous alkaline phosphatase. Moreover, the presence of fluphenazine during the Ca2+/CaM-stimulated treatment inhibits membrane phosphorylation and protects the H+-ATPase activity from inhibition.  相似文献   

8.
We examined the mechanism through which leptin increases Na+, K+-ATPase activity in the rat kidney. Leptin was infused under anaesthesia into the abdominal aorta proximally to the renal arteries and then Na+, K+-ATPase activity was measured in the renal cortex and medulla. Leptin (1 μg/kg min) increased Na+, K+-ATPase activity after 3 h of infusion, which was accompanied by the increase in urinary H2O2 excretion and phosphorylation level of extracellular signal regulated kinase (ERK). The effect of leptin on ERK and Na+, K+-ATPase was abolished by catalase, specific inhibitors of epidermal growth factor (EGF) receptor, AG1478 and PD158780, as well as by ERK inhibitor, PD98059, and was mimicked by both exogenous H2O2 and EGF. The effect of leptin was also prevented by the inhibitor of Src tyrosine kinase, PP2. Leptin and H2O2 increased Src phosphorylation at Tyr418. We conclude that leptin-induced stimulation of renal Na+, K+-ATPase involves H2O2 generation, Src kinase, transactivation of the EGF receptor, and stimulation of ERK.  相似文献   

9.
This study explored the effects of inhibition of endoplasmic reticulum (ER) Ca2+-ATPase on lipopolysaccharide (LPS)-induced protein kinase C (PKC) activation, nuclear factor-κB (NF-κB) translocation, inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in RAW 264.7 macrophages. Thapsigargin (TG) irreversibly inhibits ER Ca2+-ATPase and LPS-induced NO production is reduced even after washout. TG also attenuated LPS-stimulated iNOS expression by using immunoblot analysis. However, another distinct fully reversible ER Ca2+-ATPase inhibitor, 2,5-di-tert-butylhydroquinone (DBHQ), ionophore A23187 and ionomycin could exert a similar effect to TG in increasing intracellular calcium concentration; however, these agents could not mimic TG in reducing iNOS expression and NO production. LPS increased PKC- and -β activation, and TG pretreatment attenuated LPS-stimulated PKC activation. Not did pretreatment with DBHQ, A23187 and ionomycin reduce LPS-stimulated PKC activation. Furthermore, NF-κB-specific DNA–protein-binding activity in the nuclear extracts was enhanced by treatment with LPS, and TG pretreatment attenuated LPS-stimulated NF-κB activation. None of DBHQ, A23187 and ionomycin pretreatment reduced LPS-stimulated NF-κB activation. These data suggest that persistent inhibition of ER Ca2+-ATPase by TG would influence calcium release from ER Ca2+ pools that was stimulated by the LPS activated signal processes, and might be the main mechanism for attenuating PKC and NF-κB activation that induces iNOS expression and NO production.  相似文献   

10.
为探讨大黄鱼幼鱼在低氧及酸化胁迫下机体离子调节情况,本研究探讨了低氧(溶解氧量DO 3.5 mg·L-1,pH 8.1)、酸化(DO 7.0 mg·L-1,pH 7.35)以及低氧酸化协同胁迫(DO3.5 mg·L-1,pH 7.35)对大黄鱼幼鱼鳃组织结构以及离子调节相关生理指标的影响.结果 表明:低氧胁迫下,大黄鱼...  相似文献   

11.
为探究微咸水磁化处理条件下植株的离子稳态特征,以欧美杨I-107一年生扦插苗为试材,于生长季节分别采用Hoagland营养液和4.0 g·L-1 NaCl微咸水,经磁化处理后连续灌溉30 d.采用原子吸收分光光度法对叶片和根系中K+、Na+、Ca2+和Mg2+含量进行测定,分析离子平衡系数(K)和根-叶之间的离子选择性运输系数(SXi,Na).结果表明: 与非盐分胁迫处理相比,盐分胁迫处理根系和叶片中Na+和Ca2+含量及SK,NaSMg,Na升高,K+和Mg2+含量、K+/Na+SCa,Na降低.与非磁化微咸水灌溉处理相比,磁化微咸水灌溉处理的根系和叶片中Na+含量降低、K+含量及K+/Na+提高;根系和叶片中Ca2+含量降低、Mg2+含量提高;磁化微咸水灌溉处理中K提高,且叶片中K值显著高于根系;SK,NaSMg,Na较非磁化微咸水灌溉提高,SCa,Na较其降低.磁化微咸水灌溉中根系和叶片Na+积累量减少,K+、Ca2+和Mg2+含量增加,且维持了较高水平的K+/Na+,这有利于植株整株水平生理代谢的调控.因此,盐分胁迫下磁化作用可通过调节离子的选择性吸收和运输来维持植株体内的离子平衡.  相似文献   

12.
Measurements of Ca2+ influx and [Ca2+]i changes in Fura-2/AM-loaded prothoracic glands (PGs) of the silkworm, Bombyx mori, were used to identify Ca2+ as the actual second messenger of the prothoracicotropic hormone (PTTH) of this insect. Dose-dependent increases of [Ca2+]i in PG cells were recorded in the presence of recombinant PTTH (rPTTH) within 5 minutes. The rPTTH-mediated increases of [Ca2+]i levels were dependent on extracellular Ca2+. They were not blocked by the dihydropyridine derivative, nitrendipine, an antagonist of high-voltage-activated (HVA) Ca2+ channels, and by bepridil, an antagonist of low-voltage-activated (LVA) Ca2+ channels. The trivalent cation La3+, a non-specific blocker of plasma membrane Ca2+ channels, eliminated the rPTTH-stimulated increase of [Ca2+]i levels in PG cells and so did amiloride, an inhibitor of T-type Ca2+ channels. Incubation of PG cells with thapsigargin resulted in an increase of [Ca2+]i levels, which was also dependent on extracellular Ca2+ and was quenched by amiloride, suggesting the existence of store-operated plasma membrane Ca2+ channels, which can also be inhibited by amiloride. Thapsigargin and rPTTH did not operate independently in stimulating increases of [Ca2+]i levels and one agent’s mediated increase of [Ca2+]i was eliminated in the presence of the other. TMB-8, an inhibitor of intracellular Ca2+ release from inositol 1,4,5 trisphosphate (IP3)-sensitive Ca2+ stores, blocked the rPTTH-stimulated increases of [Ca2+]i levels, suggesting an involvement of IP3 in the initiation of the rPTTH signaling cascade, whereas ryanodine did not influence the rPTTH-stimulated increases of [Ca2+]i levels. The combined results indicate the presence of a cross-talk mechanism between the [Ca2+]i levels, filling state of IP3-sensitive intracellular Ca2+ stores and the PTTH-receptor’s-mediated Ca2+ influx.  相似文献   

13.
Using a new fluorescence imaging technique, LAMP, we recently reported that Ca2+ influx through store operated Ca2+ channels (SOCs) strongly inhibits cell coupling in primary human fibroblasts (HF) expressing Cx43. To understand the mechanism of inhibition, we studied the involvement of cytosolic pH (pHi) and Ca2+([Ca2+]i) in the process by using fluorescence imaging and ion clamping techniques. During the capacitative Ca2+ influx, there was a modest decline of pHi measured by BCECF. Decreasing pHi below neutral using thioacetate had little effect by itself on cell coupling, and concomitant pHi drop with thioacetate and bulk [Ca2+i rise with ionomycin was much less effective in inhibiting cell coupling than Ca2+ influx. Moreover, clamping pHi with a weak acid and a weak base during Ca2+ influx largely suppressed bulk pHi drop, yet the inhibition of cell coupling was not affected. In contrast, buffering [Ca2+i with BAPTA, but not EGTA, efficiently prevented cell uncoupling by Ca2+ influx. We concluded that local Ca2+ elevation subjacent to the plasma membrane is the primary cause for closing Cx43 channels during capacitative Ca2+ influx. To assess how Ca2+ influx affects junctional coupling mediated by other types of connexins, we applied the LAMP assay to Hela cells expressing Cx26. Capacitative Ca2+ influx also caused a strong reduction of cell coupling, suggesting that the inhibitory effect by Ca2+ influx may be a more general phenomenon.  相似文献   

14.
Vascular smooth muscle cells respond with an increase in intracellular Ca2+ within seconds after exposure to oxidized low density lipoprotein (oxLDL). This has been suggested to represent a signaling response that may have implications for gene expression. If so, oxLDL may induce increases in nuclear Ca2+ in smooth muscle cells in response to oxLDL. Aortic smooth muscle cells were exposed to 100 μg/ml oxLDL. Large, rapid increases in [Ca2+]i were observed using fluo-3 as an indicator dye to detect intracellular Ca2+ on the stage of a confocal micro-scope. This was also confirmed using ratiometric imaging of indo signals. These elevations appeared to be localized to the nuclear region of the cell. DNA staining of the cells confirmed its localization to the nuclear / perinuclear region of the cell. Our data demonstrate that oxLDL induces a nuclear localized elevation in Ca2+i that may have important implications for nuclear function.  相似文献   

15.
Stimulation of rat cerebral cortex with endothelin-1 (ET-1) caused an increase in the tyrosine phosphorylation of several proteins. Two of these phosphoproteins were identified by the immunoprecipitation assays as being the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. This effect was time- and dose-dependent, with an EC50 value of 3.9×10−8 M. In addition, the cerebral cortex ET receptor subtype involved in this action was determined by using BQ-123 and BQ-788, which are ETA and ETB receptor antagonists respectively. Our results indicate that the ET-1 effect on protein tyrosine phosphorylation occurred through ETB receptors. The requirement for extracellular Ca2+ on ET-1 action was also studied. ET-1-stimulated tyrosine phosphorylation of both p125FAK and p130Cas was abolished in the absence of external Ca2+ or in the presence of nimodipine, a Ca2+ channel-blocker. These results suggest that the ET-1-stimulated protein tyrosine phosphorylation was secondary to Ca2+ influx through the dihydropyridine Ca2+-channel. In slices where protein kinase C was inhibited, ET-1-stimulated tyrosine phosphorylation of both proteins was reduced. These results indicate that ET-1 modulates the tyrosine phosphorylation of specific proteins, which may be involved in adhesion processes in the brain.  相似文献   

16.
Airway myocytes are the primary effectors of airway reactivity which modulates airway resistance and hence ventilation. Stimulation of airway myocytes results in an increase in the cytosolic Ca2+ concentration ([Ca2+]i) and the subsequent activation of the contractile apparatus. Many contractile agonists, including acetylcholine, induce [Ca2+]i increase via Ca2+ release from the sarcoplasmic reticulum through InsP3 receptors. Several models have been developed to explain the characteristics of InsP3-induced [Ca2+]i responses, in particular Ca2+ oscillations. The article reviews the modelling of the major structures implicated in intracellular Ca2+ handling, i.e., InsP3 receptors, SERCAs, mitochondria and Ca2+-binding cytosolic proteins. We developed theoretical models specifically dedicated to the airway myocyte which include the major mechanisms responsible for intracellular Ca2+ handling identified in these cells. These biocomputations pointed out the importance of the relative proportion of InsP3 receptor isoforms and the respective role of the different mechanisms responsible for cytosolic Ca2+ clearance in the pattern of [Ca2+]i variations. We have developed a theoretical model of membrane conductances that predicts the variations in membrane potential and extracellular Ca2+ influx. Stimulation of this model by simulated increase in [Ca2+]i predicts membrane depolarisation, but not great enough to trigger a significant opening of voltage-dependant Ca2+ channels. This may explain why airway contraction induced by cholinergic stimulation does not greatly depend on extracellular calcium. The development of such models of airway myocytes is important for the understanding of the cellular mechanisms of airway reactivity and their possible modulation by pharmacological agents.  相似文献   

17.
A wasp venom, mastoparan, rapidly increased the cytosolic free Ca2+ concentration ([Ca2+]i) and activated phosphorylase in rat hepatocytes in a concentration-dependent manner. Mastoparan could increase [Ca2+]i even in the absence of extracellular Ca2+, but a larger increase was observed in the presence of extracellular Ca2+. Thus, mastoparan mobilized Ca2+ from intracellular and extracellular Ca2+ stores. It also activated inositol triphosphate (IP3) accumulation, but did not stimulate cAMP production. From these results, we conclude that mastoparan activates rat hepatic glycogenolysis mediated by the accumulation of IP3, which causes an increase of [Ca2+]i but not that mediated by cAMP.  相似文献   

18.
DMSO differentiated U937 cells responded to 10−6 M LTD4, LTB4 and FMLP with an increase in both InsP formation and [Ca2+]i. FMLP caused a greater rise in InsPs than either LTD4 or LTB4, which were equivalent. LTD4, however, caused a greater increase in [Ca2+]i than LTB4 (4-fold) or FMLP. The FMLP [Ca2+]i and InsP responses were abolished by pertussis toxin (100 ng/ml for 4 h) but were unaffected by PMA (10−7 M for 3 min). In contrast, the LTD4 [Ca2+]i and InsP responses were reduced by only 50% by pertussis toxin, whilst PMA reduced the [Ca2+]i and InsP responses to LTD4 by 75 and 30%, respectively. These results suggest that mechanisms additional to InsP formation exist for mediating LTD4 evoked increases in [Ca2+]i.  相似文献   

19.
Benzophenone (BP) was used as a photosensitizer to initiate lipid peroxidation in model and native biological membranes at concentrations of BP that do not perturb bilayer structure, as assessed by stearic acid spin label dynamics. Illumination of BP partitioned into sarcoplasmic reticulum membranes (SR) results in an exponential decay of BP and a linear accumulation of conjugated dienes and other products of lipid peroxidation as observed previously for micelles of linoleic acid [Marcovic and Patterson. Photochem. Photobiol. 58:329–334, 1993]. Lipid peroxidation was substantially inhibited in the presence of membrane-spanning proteins in SR compared to protein-free lipid vesicles, suggesting the competitive reaction of the initiator (triplet BP) and BP-derived radical species with protein groups. Modification of the predominant integral membrane protein, the Ca2+-ATPase, was demonstrated by changes in Ca2+-ATPase amino acid composition as well as by its functional inhibition. The rate of calcium transport showed an immediate exponential decay to completion, while calcium-dependent ATPase activity exhibited an initial lag before modest inactivation. These results are consistent with the respective localization of calcium transport sites within membrane-spanning peptides and the ATP-binding site within the cytosolic domain of the Ca2+-ATPase, further suggesting that photosensitization of BP models oxidative stress inside the hydrophobic interior of the SR membrane.  相似文献   

20.
Glucose-induced insuline release, glucose-induced rises in intracellular free Ca2+ concentration ([Ca2+]i), and voltage-dependent Ca2+ channel activity were assessed in monolayer cultures of β-vells 3–5 day-old rats. The glucose-stimulated insulin secretory responses and [Ca2+]i rises were like those in adult rat β-cells rather than fetal rat β-cells. Voltage-dependent Ca2+ channel antagonists decreased glucose-induced insulin secretion, aborted the [Ca2+]2 rise and, like deprivation of extracellular Ca2+, prevented the glucose-induced rise in [Ca2+]i when added before the glucose challenge. The presence of nifedipine-sensitive, voltage-dependent Ca2+ channels was demonstrated directly by measuring Ca2+ currents using the whole-cell configuration of the patch-clamp technique and indirectly by measuring [Ca2+]1 after membrane depolarization by 45 mMm K+ or 200 μM tolbutamide. Thus, in cultured β-cells of 3–5 day-old rats the coupling of glucose stimulation to Ca2+ influx is essentially mature, in contrast to what has been reported for fetal or very early neonatal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号